Discretization Methods and Iterative Solvers Based on Domain Decomposition: Lecture Notes in Computational Science and Engineering, cartea 17
Autor Barbara I. Wohlmuthen Limba Engleză Paperback – 27 feb 2001
Din seria Lecture Notes in Computational Science and Engineering
- Preț: 375.63 lei
- 18% Preț: 1222.40 lei
- 18% Preț: 771.21 lei
- Preț: 376.60 lei
- 20% Preț: 970.85 lei
- 15% Preț: 635.45 lei
- 15% Preț: 639.80 lei
- Preț: 397.12 lei
- 18% Preț: 956.28 lei
- 18% Preț: 949.19 lei
- Preț: 389.98 lei
- 18% Preț: 942.98 lei
- 15% Preț: 634.00 lei
- 15% Preț: 635.45 lei
- 15% Preț: 636.39 lei
- 18% Preț: 1361.12 lei
- Preț: 419.69 lei
- 18% Preț: 1215.45 lei
- 20% Preț: 652.77 lei
- 15% Preț: 641.20 lei
- 15% Preț: 631.27 lei
- 18% Preț: 938.22 lei
- 18% Preț: 1199.35 lei
- 18% Preț: 885.79 lei
- 18% Preț: 1217.62 lei
- 20% Preț: 972.01 lei
- 15% Preț: 629.83 lei
- 18% Preț: 935.12 lei
- 18% Preț: 767.34 lei
- 18% Preț: 930.17 lei
- 15% Preț: 629.83 lei
- 18% Preț: 945.30 lei
- 18% Preț: 1662.03 lei
- 15% Preț: 637.21 lei
Preț: 375.81 lei
Nou
Puncte Express: 564
Preț estimativ în valută:
71.93€ • 75.46$ • 59.67£
71.93€ • 75.46$ • 59.67£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540410836
ISBN-10: 354041083X
Pagini: 216
Ilustrații: X, 199 p. 5 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 354041083X
Pagini: 216
Ilustrații: X, 199 p. 5 illus.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Discretization Techniques Based on Domain Decomposition.- 1.1 Introduction to Mortar Finite Element Methods.- 1.2 Mortar Methods with Alternative Lagrange Multiplier Spaces.- 1.3 Discretization Techniques Based on the Product Space.- 1.4 Examples for Special Mortar Finite Element Discretizations.- 1.5 Numerical Results.- Iterative Solvers Based on Domain Decomposition.- 2.1 Abstract Schwarz Theory.- 2.2 Vector Field Discretizations.- 2.3 A Multigrid Method for the Mortar Product Space Formulation.- 2.4 A Dirichlet-Neumann Type Method.- 2.5 A Multigrid Method for the Mortar Saddle Point Formulation.- List of Figures.- List of Tables.- Notations.
Caracteristici
Includes supplementary material: sn.pub/extras