Cantitate/Preț
Produs

Principles of Computational Fluid Dynamics: Springer Series in Computational Mathematics, cartea 29

Autor Pieter Wesseling
en Limba Engleză Paperback – 21 dec 2009
This is a softcover reprint of a very popular hardcover edition, published in 1999. An account is given of the state of the art of numerical methods employed in computational fluid dynamics. Numerical principles are treated in detail, using elementary methods. Attention is given to difficulties arising from geometric complexity of the flow domain. Uniform accuracy for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Unified methods for compressible and incompressible flows are discussed, as well as the shallow-water equations. A basic introduction is given to efficient iterative solution methods.

"This book is a well-written graduate level text in computational fluid dynamics, with a good introduction to the two numerical methods, finite volume and finite difference. The material is well-organized, starting with simple one-dimensional equations and moving to numerical methods for two-dimensional and three-dimensional problems. There is a good mixture of theoretical and computational topics. This text should be of value to all researchers interested in computational fluid dynamics." Mathematical Reviews 
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63317 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 21 dec 2009 63317 lei  6-8 săpt.
Hardback (1) 63962 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 26 oct 2000 63962 lei  6-8 săpt.

Din seria Springer Series in Computational Mathematics

Preț: 63317 lei

Preț vechi: 74490 lei
-15% Nou

Puncte Express: 950

Preț estimativ în valută:
12118 12784$ 10099£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642051456
ISBN-10: 3642051456
Pagini: 658
Ilustrații: XII, 644 p.
Dimensiuni: 155 x 235 x 45 mm
Greutate: 0.91 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

The basic equation of fluid dynamics.- Partial differential equations: analytic aspects.- Finite volume and finite difference discretization on nonuniform grids.- The stationary convection-diffusion equation.- The nonstationary convection-diffusion equation.- The incompressible Navier-Stokes equations.- Iterative methods.- The shallow-water equations.- Scalar conservation laws.- The Euler equations in one space dimension.- Discretization in general domains.- Numerical solution of the Euler equations in general domains.- Numerical solution of the Navier-Stokes equations in general domains.- Unified methods for computing incompressible and compressible flow.

Recenzii

"This book is a well-written graduate level text in computational fluid dynamics. The text begins with a rather thorough discussion and derivation of the equations of fluid dynamics, followed by a review of topics in the theory of partial differential equations. There is a good introduction to the two numerical methods, finite volume and finite difference, that are treated in this text. The material is well-organized, starting with simple one-dimensional equations and moving to numerical methods for two-dimensional and three-dimensional problems. Grids are treated in some detail. In addition to simple colocated grids, there is discussion of non-uniform, staggered, and unstructured grids. There is a good mixture of theoretical and computational topics. This text should be of value to all researchers interested in computational fluid dynamics." -- MATHEMATICAL REVIEWS

Textul de pe ultima copertă

The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to current literature, to help the reader to quickly reach the current research frontier.

Caracteristici

This book will become the standard reference for CFD for the next 20 years Includes supplementary material: sn.pub/extras