Minimization Methods for Non-Differentiable Functions: Springer Series in Computational Mathematics, cartea 3
Autor N.Z. Shor Traducere de K. C. Kiwiel, A. Ruszczynskien Limba Engleză Paperback – 14 dec 2011
Din seria Springer Series in Computational Mathematics
- 24% Preț: 703.00 lei
- 15% Preț: 497.64 lei
- 18% Preț: 726.85 lei
- Preț: 403.91 lei
- Preț: 386.61 lei
- 18% Preț: 1399.11 lei
- Preț: 394.51 lei
- 18% Preț: 1395.94 lei
- 18% Preț: 784.48 lei
- 20% Preț: 996.22 lei
- 24% Preț: 635.73 lei
- 15% Preț: 649.22 lei
- Preț: 400.47 lei
- 18% Preț: 740.44 lei
- 15% Preț: 643.65 lei
- Preț: 380.63 lei
- 18% Preț: 904.74 lei
- 18% Preț: 1014.28 lei
- 18% Preț: 1111.97 lei
- Preț: 393.90 lei
- 18% Preț: 947.98 lei
- 15% Preț: 650.04 lei
- 15% Preț: 658.05 lei
- 15% Preț: 660.04 lei
- 18% Preț: 1397.52 lei
- 18% Preț: 1126.35 lei
- 18% Preț: 1122.87 lei
- 18% Preț: 793.76 lei
- 15% Preț: 710.23 lei
Preț: 521.60 lei
Preț vechi: 613.64 lei
-15% Nou
Puncte Express: 782
Preț estimativ în valută:
99.83€ • 102.88$ • 84.28£
99.83€ • 102.88$ • 84.28£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642821202
ISBN-10: 3642821200
Pagini: 176
Ilustrații: VIII, 164 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642821200
Pagini: 176
Ilustrații: VIII, 164 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 1985
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Special Classes of Nondifferentiable Functions and Generalizations of the Concept of the Gradient.- 1.1 The Need to Introduce Special Classes of Nondifferentiable Functions.- 1.2 Convex Functions. The Concept of Subgradient.- 1.3 Some Methods for Computing Subgradients.- 1.4 Almost Differentiable Functions.- 1.5 Semismooth and Semiconvex Functions.- 2. The Subgradient Method.- 2.1 The Problem of Stepsize Selection in the Subgradient Method.- 2.2 Basic Convergence Results for the Subgradient Method.- 2.3 On the Linear Rate of Convergence of the Subgradient Method.- 2.4 The Subgradient Method and Fejer-type Approximations.- 2.5 Methods of ?-subgradients.- 2.6 An Extension of the Subgradient Method to a Class of Nonconvex Functions. Stochastic Versions and Stability of the Method.- 3. Gradient-type Methods with Space Dilation.- 3.1 Heuristics of Methods with Space Dilation.- 3.2 Operators of Space Dilation.- 3.3 The Subgradient Method with Space Dilation in the Direction of the Gradient.- 3.4 Convergence of Algorithms with Space Dilation.- 3.5 Application of the Subgradient Method with Space Dilation to the Solution of Systems of Nonlinear Equations.- 3.6 A Minimization Method Using the Operation of Space Dilation in the Direction of the Difference of Two Successive Almost-Gradients.- 3.7 Convergence of a Version of the r-Algorithm with Exact Directional Minimization.- 3.8 Relations between SDG Algorithms and Algorithms of Successive Sections.- 3.9 Computational Modifications of Subgradient Methods with Space Dilation.- 4. Applications of Methods for Nonsmooth Optimization to the Solution of Mathematical Programming Problems.- 4.1 Application of Subgradient Algorithms in Decomposition Methods.- 4.2 An Iterative Method for Solving Linear Programming Problems of SpecialStructure.- 4.3 The Solution of Distribution Problems by the Subgradient Method.- 4.4 Experience in Solving Production-Transportation Problems by Subgradient Algorithms with Space Dilation.- 4.5 Application of r-Algorithms to Nonlinear Minimax Problems.- 4.6 Application of Methods for Minimizing Nonsmooth Functions to Problems of Interpreting Gravimetric Observations.- 4.7 Other Areas of Applications of Generalized Gradient Methods.- Concluding Remarks.- References.