Sequence Transformations: Springer Series in Computational Mathematics, cartea 11
Autor Jean-Paul Delahaye Introducere de Claude Brezinskien Limba Engleză Paperback – 8 oct 2011
Din seria Springer Series in Computational Mathematics
- 24% Preț: 703.00 lei
- 15% Preț: 497.64 lei
- 18% Preț: 726.85 lei
- Preț: 403.91 lei
- 18% Preț: 1399.11 lei
- Preț: 394.51 lei
- 18% Preț: 1395.94 lei
- 18% Preț: 784.48 lei
- 20% Preț: 996.22 lei
- 24% Preț: 635.73 lei
- 15% Preț: 649.22 lei
- Preț: 400.47 lei
- 18% Preț: 740.44 lei
- 15% Preț: 643.65 lei
- Preț: 380.63 lei
- 18% Preț: 904.74 lei
- 18% Preț: 1014.28 lei
- 18% Preț: 1111.97 lei
- Preț: 393.90 lei
- 18% Preț: 947.98 lei
- 15% Preț: 650.04 lei
- 15% Preț: 658.05 lei
- 15% Preț: 521.60 lei
- 15% Preț: 660.04 lei
- 18% Preț: 1397.52 lei
- 18% Preț: 1126.35 lei
- 18% Preț: 1122.87 lei
- 18% Preț: 793.76 lei
- 15% Preț: 710.23 lei
Preț: 386.61 lei
Nou
Puncte Express: 580
Preț estimativ în valută:
73.100€ • 76.96$ • 62.01£
73.100€ • 76.96$ • 62.01£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642648021
ISBN-10: 3642648029
Pagini: 280
Ilustrații: XXI, 252 p.
Dimensiuni: 152 x 229 x 15 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642648029
Pagini: 280
Ilustrații: XXI, 252 p.
Dimensiuni: 152 x 229 x 15 mm
Greutate: 0.38 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 The Various Kinds of Algorithmic Sequence Transformations.- 1 — Sequence Transformations.- 2 — Algorithms for Sequences and Algorithmic Transformations.- 3 — k-Normal Algorithms and k-Normal Transformations.- 4 — k-Memories Algorithms and k-Memories Transformations.- 5 — k-Stationary Algorithms and k-Stationary Transformations.- 6 — Rational Transformations and Linear Transformations.- 7 — Diagram of Inclusions.- References.- 2 Decidability and Undecidability in the Limit.- 1 — Definitions and the Normalisation Theorem.- 2 — Problems Concerning Convergence, Turbulence and Periodicity of Sequences.- 3 — Algorithms for Counting the Number of Accumulation Points.- 4 — Algorithms for Determining the Period of an Asymptotically Periodic Sequence.- 5 — Families of Sequences of Iterations.- 6 — Two General Results Concerning the Decidability in the Limit.- Appendix 1 — Strength of an Accumulation Point and Quickness of a Sequence.- Appendix 2 — Decidability in the Limit and Recursivity..- Appendix 3 — Decidability of the Convergence, Turbulence and Asymptotic Periodicity of a Continuous Function.- References.- 3 Algorithms for Extracting Convergent Subsequences.- 1 — T-Algorithms.- 2 — S-Algorithms.- 3 — U-Algorithms.- 4 — Limitation Results.- References.- 4 The Partially Ordered Systems of Accelerable Families.- 1 — Acceleration Velocity, Acceleration, Prediction.- 2 — Transformations for Convergence Acceleration, Accelerable Families.- 3 — Examples of Accelerable Families of Sequences.- 4 — Relationships Between the Ordered Systems of Accelerable Families.- 5 — Maximal Accelerable Families.- References.- 5 Non-Accelerable Families of Sequences.- 1 — Remanence and First Applications.- 2 — Families of MonotonesSequences.- 3 — Alternating and Oscillating Sequences.- 4 — Families of Linearly Convergent Sequences.- 5 — Families of Logarithmically Convergent Sequences.- 6 — Table of Results.- References.- 6 Accelerating the Convergence of Linear Sequences.- 1 — Linearly Convergent and Periodico-Linearly Convergent Sequences.- 2 — Acceleration of Periodico-Linear Sequences.- 3 — Optimality of the ?2 of Aitken.- References.- 7 Automatic Selection of Sequence Transformations.- 1 — General Methods.- 2 — Automatic Choice of Sequences of Parameters in the Richardson Extrapolation.- References.