Cantitate/Preț
Produs

Galerkin Finite Element Methods for Parabolic Problems: Springer Series in Computational Mathematics, cartea 25

Autor Vidar Thomee
en Limba Engleză Paperback – 18 noi 2010
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin ?nite element methods as appliedtoparabolicpartialdi?erentialequations. Theemphasesandselection of topics re?ects my own involvement in the ?eld over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin ?nite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doingso I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by ?rst treating the time discretization of an abstract di?erential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 108944 lei  43-57 zile
  Springer Berlin, Heidelberg – 18 noi 2010 108944 lei  43-57 zile
Hardback (1) 109547 lei  43-57 zile
  Springer Berlin, Heidelberg – 7 iul 2006 109547 lei  43-57 zile

Din seria Springer Series in Computational Mathematics

Preț: 108944 lei

Preț vechi: 132859 lei
-18% Nou

Puncte Express: 1634

Preț estimativ în valută:
20850 21657$ 17319£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642069673
ISBN-10: 3642069673
Pagini: 384
Ilustrații: XII, 364 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of hardcover 2nd ed. 2006
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Series in Computational Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

The Standard Galerkin Method.- Methods Based on More General Approximations of the Elliptic Problem.- Nonsmooth Data Error Estimates.- More General Parabolic Equations.- Negative Norm Estimates and Superconvergence.- Maximum-Norm Estimates and Analytic Semigroups.- Single Step Fully Discrete Schemes for the Homogeneous Equation.- Single Step Fully Discrete Schemes for the Inhomogeneous Equation.- Single Step Methods and Rational Approximations of Semigroups.- Multistep Backward Difference Methods.- Incomplete Iterative Solution of the Algebraic Systems at the Time Levels.- The Discontinuous Galerkin Time Stepping Method.- A Nonlinear Problem.- Semilinear Parabolic Equations.- The Method of Lumped Masses.- The H1 and H?1 Methods.- A Mixed Method.- A Singular Problem.- Problems in Polygonal Domains.- Time Discretization by Laplace Transformation and Quadrature.

Textul de pe ultima copertă

This book provides insight in the mathematics of Galerkin finite element method as applied to parabolic equations. The approach is based on first discretizing in the spatial variables by Galerkin's method, using piecewise polynomial trial functions, and then applying some single step or multistep time stepping method. The concern is stability and error analysis of approximate solutions in various norms, and under various regularity assumptions on the exact solution. The book gives an excellent insight in the present ideas and methods of analysis. The second edition has been influenced by recent progress in application of semigroup theory to stability and error analysis, particulatly in maximum-norm. Two new chapters have also been added, dealing with problems in polygonal, particularly noncovex, spatial domains, and with time discretization based on using Laplace transformation and quadrature.