Cantitate/Preț
Produs

Distributed Detection and Data Fusion

Autor Pramod K. Varshney
en Limba Engleză Paperback – 26 sep 2012
This book provides an introductory treatment of the fundamentals of decision-making in a distributed framework. Classical detection theory assumes that complete observations are available at a central processor for decision-making. More recently, many applications have been identified in which observations are processed in a distributed manner and decisions are made at the distributed processors, or processed data (compressed observations) are conveyed to a fusion center that makes the global decision. Conventional detection theory has been extended so that it can deal with such distributed detection problems. A unified treatment of recent advances in this new branch of statistical decision theory is presented. Distributed detection under different formulations and for a variety of detection network topologies is discussed. This material is not available in any other book and has appeared relatively recently in technical journals. The level of presentation is such that the hook can be used as a graduate-level textbook. Numerous examples are presented throughout the book. It is assumed that the reader has been exposed to detection theory. The book will also serve as a useful reference for practicing engineers and researchers. I have actively pursued research on distributed detection and data fusion over the last decade, which ultimately interested me in writing this book. Many individuals have played a key role in the completion of this book.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92843 lei  6-8 săpt.
  Springer – 26 sep 2012 92843 lei  6-8 săpt.
Hardback (1) 93449 lei  6-8 săpt.
  Springer – 4 dec 1996 93449 lei  6-8 săpt.

Preț: 92843 lei

Preț vechi: 113224 lei
-18% Nou

Puncte Express: 1393

Preț estimativ în valută:
17776 18511$ 14749£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461273332
ISBN-10: 1461273331
Pagini: 292
Ilustrații: XII, 276 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

This book provides an introductory treatment of the fundamentals of decision-making in a distributed framework. Classical detection theory assumes that complete observations are available at a central processor for decision-making. More recently, many applications have been identified in which observations are processed in a distributed manner and decisions are made at the distributed processors, or processed data (compressed observations) are conveyed to a fusion center that makes the global decision. Conventional detection theory has been extended so that it can deal with such distributed detection problems. A unified treatment of recent advances in this new branch of statistical decision theory is presented. Distributed detection under different formulations and for a variety of detection network topologies is discussed. This material is not available in any other book and has appeared relatively recently in technical journals. The level of presentation is such that the hook can be used as a graduate-level textbook. Numerous examples are presented throughout the book. It is assumed that the reader has been exposed to detection theory. The book will also serve as a useful reference for practicing engineers and researchers. I have actively pursued research on distributed detection and data fusion over the last decade, which ultimately interested me in writing this book. Many individuals have played a key role in the completion of this book.

Cuprins

1 Introduction.- 1.1 Distributed Detection Systems.- 1.2 Outline of the Book.- 2 Elements of Detection Theory.- 2.1 Introduction.- 2.2 Bayesian Detection Theory.- 2.3 Minimax Detection.- 2.4 Neyman-Pearson Test.- 2.5 Sequential Detection.- 2.6 Constant False Alarm Rate (CFAR) Detection.- 2.7 Locally Optimum Detection.- 3 Distributed Bayesian Detection: Parallel Fusion Network.- 3.1 Introduction.- 3.2 Distributed Detection Without Fusion.- 3.3 Design of Fusion Rules.- 3.4 Detection with Parallel Fusion Network.- 4 Distributed Bayesian Detection: Other Network Topologies.- 4.1 Introduction.- 4.2 The Serial Network.- 4.3 Tree Networks.- 4.4 Detection Networks with Feedback.- 4.5 Generalized Formulation for Detection Networks.- 5 Distributed Detection with False Alarm Rate Constraints.- 5.1 Introduction.- 5.2 Distributed Neyman-Pearson Detection.- 5.3 Distributed CFAR Detection.- 5.4 Distributed Detection of Weak Signals.- 6 Distributed Sequential Detection.- 6.1 Introduction.- 6.2 Sequential Test Performed at the Sensors.- 6.3 Sequential Test Performed at the Fusion Center.- 7 Information Theory and Distributed Hypothesis Testing.- 7.1 Introduction.- 7.2 Distributed Detection Based on Information Theoretic Criterion.- 7.3 Multiterminal Detection with Data Compression.- Selected Bibliography.