Cantitate/Preț
Produs

Domain Adaptation and Representation Transfer: 5th MICCAI Workshop, DART 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 12, 2023, Proceedings: Lecture Notes in Computer Science, cartea 14293

Editat de Lisa Koch, M. Jorge Cardoso, Enzo Ferrante, Konstantinos Kamnitsas, Mobarakol Islam, Meirui Jiang, Nicola Rieke, Sotirios A. Tsaftaris, Dong Yang
en Limba Engleză Paperback – 14 oct 2023
This book constitutes the refereed proceedings of the 5th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2023, which was held in conjunction with MICCAI 2023, in October 2023. 

The 16 full papers presented in this book were carefully reviewed and selected from 32 submissions. They discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.
 
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 32022 lei

Preț vechi: 40027 lei
-20% Nou

Puncte Express: 480

Preț estimativ în valută:
6128 6366$ 5090£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031458569
ISBN-10: 3031458567
Pagini: 170
Ilustrații: X, 170 p. 44 illus., 40 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.26 kg
Ediția:1st ed. 2024
Editura: Springer Nature Switzerland
Colecția Springer
Seria Lecture Notes in Computer Science

Locul publicării:Cham, Switzerland

Cuprins

Domain adaptation of MRI scanners as an alternative to MRI harmonization.- MultiVT: Multiple-Task Framework for Dentistry.- Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation.- PLST: A Pseudo-Labels with a Smooth Transition Strategy for Medical Site Adaptation.- Compositional Representation Learning for Brain Tumor Segmentation.- Hierarchical Compositionality in Hyperbolic Space for Robust Medical Image Segmentation.- Realistic Data Enrichment for Robust Image Segmentation in Kidney Transplant Pathology.- Boosting Knowledge Distillation via Random Fourier Features for Prostate Cancer Grading in Histopathology Images.- Semi-supervised Domain Adaptation for Automatic Quality Control of FLAIR MRIs in a Clinical Data Warehouse.- Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-Supervision.- The Performance of Transferability Metrics does not Translate to Medical Tasks.- DGM-DR: Domain Generalization with Mutual Information Regularized Diabetic Retinopathy Classification.- SEDA: Self-Ensembling ViT with Defensive Distillation and Adversarial Training for robust Chest X-rays Classification.- A Continual Learning Approach for Cross-Domain White Blood Cell Classification.- Metadata Improves Segmentation Through Multitasking Elicitation.- Self-Prompting Large Vision Models for Few-Shot Medical Image Segmentation.