Cantitate/Preț
Produs

Dynamic Analysis of Non-Linear Structures by the Method of Statistical Quadratization: Lecture Notes in Engineering, cartea 57

Autor M. G. Donley, Pol Spanos
en Limba Engleză Paperback – 31 iul 1990
1. 1 Introduction As offshore oil production moves into deeper water, compliant structural systems are becoming increasingly important. Examples of this type of structure are tension leg platfonns (TLP's), guyed tower platfonns, compliant tower platfonns, and floating production systems. The common feature of these systems, which distinguishes them from conventional jacket platfonns, is that dynamic amplification is minimized by designing the surge and sway natural frequencies to be lower than the predominant frequencies of the wave spectrum. Conventional jacket platfonns, on the other hand, are designed to have high stiffness so that the natural frequencies are higher than the wave frequencies. At deeper water depths, however, it becomes uneconomical to build a platfonn with high enough stiffness. Thus, the switch is made to the other side of the wave spectrum. The low natural frequency of a compliant platfonn is achieved by designing systems which inherently have low stiffness. Consequently, the maximum horizontal excursions of these systems can be quite large. The low natural frequency characteristic of compliant systems creates new analytical challenges for engineers. This is because geometric stiffness and hydrodynamic force nonlinearities can cause significant resonance responses in the surge and sway modes, even though the natural frequencies of these modes are outside the wave spectrum frequencies. High frequency resonance responses in other modes, such as the pitch mode of a TLP, are also possible.
Citește tot Restrânge

Din seria Lecture Notes in Engineering

Preț: 61238 lei

Preț vechi: 72045 lei
-15% Nou

Puncte Express: 919

Preț estimativ în valută:
11720 12364$ 9767£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540527435
ISBN-10: 3540527435
Pagini: 188
Ilustrații: VII, 172 p.
Dimensiuni: 170 x 244 x 10 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Engineering

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1: Introduction.- 1.1 Introduction.- 1.2 Aim of Study.- 1.3 TLP Model.- 1.4 Environmental Loads.- 1.5 Literature Review of TLP Analyses.- 1.6 Scope of Study.- 2: Equivalent Stochastic Quadratization for Single-Degree-of-Freedom Systems.- 2.1 Introduction.- 2.2 Analytical Method Formulation.- 2.3 Derivation of Linear and Quadratic Transfer Functions.- 2.4 Response Probability Distribution.- 2.5 Response Spectral Density.- 2.6 Solution Procedure.- 2.7 Example of Application.- 2.8 Summary and Conclusions.- 3: Equivalent Stochastic Quadratization for Multi-Degree-of-Freedom Systems.- 3.1 Introduction.- 3.2 Analytical Method Formulation.- 3.3 Derivation of Linear and Quadratic Transfer Functions.- 3.4 Response Probability Distribution.- 3.5 Response Spectral Density.- 3.6 Solution Procedure.- 3.7 Reduced Solution Analytical Method.- 3.8 Example of Application.- 3.9 Summary and Conclusions.- 4: Potential Wave Forces on a Moored Vertical Cylinder.- 4.1 Introduction.- 4.2 Volterra Series Force Description.- 4.3 Near-Field Approach for Deriving Potential Forces.- 4.4 Linear Velocity Potential.- 4.5 Added Mass Force.- 4.6 Linear Force Transfer Functions.- 4.7 Quadratic Force Transfer Functions.- 4.8 Transfer Functions for Tension Leg Platform.- 4.9 Summary and Conclusions.- 5: Equivalent Stochastic Quadratization for Tension Leg Platform Response to Viscous Drift Forces.- 5.1 Introduction.- 5.2 Formulation of TLP Model.- 5.3 Analytical Method Formulation.- 5.4 Derivation of Linear and Quadratic Transfer Functions.- 5.5 Response Probability Distribution.- 5.6 Response Spectral Density.- 5.7 Axial Tendon Force.- 5.8 Solution Procedure.- 5.9 Numerical Example.- 5.10 Summary and Conclusions.- 6: Stochastic Response of a Tension Leg Platform to Viscous and Potential Drift Forces.- 6.1Introduction.- 6.2 Analytical Method Formulation.- 6.3 Numerical Results.- 6.4 Summary and Conclusions.- 7: Summary and Conclusions.- Appendix A: Gram-Charlier Coefficients.- A.1 Introduction.- A.2 Gram-Charlier Coefficients.- Appendix B: Evaluation of Expectations.- B.1 Introduction.- B.2 Expectations Involving Quadratic Nonlinearity.- B.3 High Order Central Moments.- Appendix C: Pierson-Moskowitz Wave Spectrum.- Appendix D: Simulation Methods.- D.1 Introduction.- D.2 Linear Wave Simulation.- D.3 Linear Wave Force Simulation.- D.4 Drag Force Simulation.- D.5 Quadratic Wave Force Simulation.- References:.