Cantitate/Preț
Produs

Dynamics with Chaos and Fractals: Nonlinear Systems and Complexity, cartea 29

Autor Marat Akhmet, Mehmet Onur Fen, Ejaily Milad Alejaily
en Limba Engleză Paperback – 2 ian 2021
The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 40368 lei  38-44 zile
  Springer International Publishing – 2 ian 2021 40368 lei  38-44 zile
Hardback (1) 41379 lei  38-44 zile
  Springer International Publishing – 2 ian 2020 41379 lei  38-44 zile

Din seria Nonlinear Systems and Complexity

Preț: 40368 lei

Preț vechi: 50460 lei
-20% Nou

Puncte Express: 606

Preț estimativ în valută:
7728 8424$ 6498£

Carte tipărită la comandă

Livrare economică 13-19 decembrie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030358563
ISBN-10: 3030358569
Pagini: 226
Ilustrații: XIII, 226 p. 76 illus., 71 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Nonlinear Systems and Complexity

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1. Introduction.- Chapter 2. The Unpredictable Point and Poincare Chaos.- Chapter 3. Unpredictability in Bebutov Dynamics.- Chapter 4. Non-linear Unpredictable Perturbations.- Chapter 5. Unpredictability in Topological Dynamics.- Chapter 6. Unpredictable Solutions of Hyperbolic Linear Equations.- Chapter 7. Strongly Unpredictable Solutions.- Chapter 8. Li-Yorke Chaos in Hybrid Systems on a Time Scale.- Chapter 9. Homoclinic and Heteroclinic Motions in Economic Models.- Chapter 10. Global Weather and Climate in the light of El Nino-Southern Oscillation.- Chapter 11. Fractals: Dynamics in the Geometry.- Chapter 12. Abstract Similarity, Fractals and Chaos.


Notă biografică

Marat Akhmet
Dr. Marat Akhmet is currently a Professor at Department of Mathematics, Middle East Technical University, Ankara, Turkey. He got his B.S. degree in mathematics at Aktobe State University, Kazakhstan, and Ph.D. degree in differential equations and mathematical physics at Kiev State University, Ukraine. Currently Dr. Marat Akhmet’s researches focus on the dynamical models and differential equations. He has published six books and more than a hundred and fifty scientific papers. In the last several years, he has been investigating dynamics of neural networks, periodic and almost periodic motions, stability, chaos and fractals.
Mehmet Onur FenDr. Mehmet Onur Fen received his B.S. degree in mathematics from Middle East Technical University, Ankara, Turkey, with a double major in physics. He graduated from the mathematics Ph.D. program of the same university in September 2013. Currently he is working as an Associate Professor at Department of Mathematics, TED University, Ankara, Turkey. Dr. Mehmet Onur Fen’s research interests include chaotic dynamical systems, mathematical models of neural networks, and several types of differential equations.
Ejaily Milad Alejaily
Dr. Ejaily Milad Alejaily is currently a lecturer at the College of Engineering Technology, Houn, Libya. He received his B.S. degree in mechanical engineering from Sirte University, Libya in 1997.  Later in 2009, Dr. Alejaily obtained his M.S. in mathematics from Universiti Teknologi Malaysia. He graduated from the mathematics Ph.D. program of Middle East Technical University, Ankara, Turkey in August 2019.

Textul de pe ultima copertă

The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. The Book
  • Stands as the first book presenting theoretical background on the unpredictable point and mapping of fractals
  • Introduces the concepts of unpredictable functions, abstract self-similarity, and similarity map
  • Discusses unpredictable solutions of quasilinear ordinary and functional differential equations
  • Illustrates new ways to construct fractals based on the ideas of Fatou and Julia
  • Examines unpredictability in ocean dynamics and neural networks, chaos in hybrid systems on a time scale, and homoclinic and heteroclinic motions in economic models
 

Caracteristici

Stands as the first book presenting theoretical background on the unpredictable point and mapping of fractals Introduces the concepts of unpredictable functions, abstract self-similarity, and similarity map Discusses unpredictable solutions of quasilinear ordinary and functional differential equations Illustrates new ways to construct fractals based on the ideas of Fatou and Julia Examines unpredictability in ocean dynamics and neural networks, chaos in hybrid systems on a time scale, and homoclinic and heteroclinic motions in economic models