Cantitate/Preț
Produs

Einführung in die Mathematische Optimierung: Springer-Lehrbuch

Autor Rainer E. Burkard, Uwe T. Zimmermann
de Limba Germană Paperback – 11 mai 2012
Die Mathematische Optimierung gehört aufgrund rasanter wissenschaftlicher Entwicklung und weitreichender Anwendungsbreite zu den Eckpunkten eines Mathematikstudiums. Dieses Buch legt mit einer Einführung in die Lineare und Konvexe Optimierung eine solide Basis für komplexere Themen der Diskreten und Nichtlinearen Optimierung. Bei Studierenden werden nur Grundkenntnisse der Linearen Algebra und Analysis vorausgesetzt, wie sie im ersten Studienjahr jedes mathematisch fundierten Bachelorstudiums vermittelt werden. Bei Auswahl, Umfang und Aufbau stützen sich die Autoren auf langjährige Erfahrungen mit einschlägigen Vorlesungen an den technischen Universitäten Braunschweig und Graz. Das Buch eignet sich als Grundlage zu Vorlesungen der Linearen Optimierung (ca. 4 SWS) und der Konvexen Optimierung (ca. 2 SWS) im Bachelorstudium. Es enthält mehr Material als hierfür erforderlich, so dass Dozenten Raum und Anreiz für subjektive Schwerpunkte oder thematische Straffung geboten wird.
Citește tot Restrânge

Din seria Springer-Lehrbuch

Preț: 25712 lei

Nou

Puncte Express: 386

Preț estimativ în valută:
4922 5292$ 4103£

Carte tipărită la comandă

Livrare economică 19 decembrie 24 - 02 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642286728
ISBN-10: 3642286720
Pagini: 315
Ilustrații: XII, 315 S. 56 Abb.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.45 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer-Lehrbuch

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Upper undergraduate

Cuprins

I. Lineare Optimierung. Lineare Optimierungsmodelle.- Geometrie der Linearen Optimierung.- Das generische Simplexverfahren.- Nummerische und algorithmische Aspekte des Simplexverfahrens.- Alternative lineare Systeme und duale lineare Optimierungsaufgaben.- Polyederdarstellung und Dekomposition.-  Sensitivität und parametrische Optimierung.- Komplexität der linearen Optimierung.- Ein generisches Innere Punkte Verfahren. Ganzzahlige Polyeder, Transport- und Flussprobleme.- II. Konvexe Optimierung. Nichtlineare Modelle.- Konvexe Mengen.- Konvexe Funktionen.- Minima konvexer Funktionen.- Verfahren zur Minimierung ohne Restriktionen.- Gradienten- und Newton-Verfahren.- Quadratische Optimierung.

Notă biografică

Prof. Dr. Rainer Burkard, Technische Universität Graz, Österreich
Prof. Dr. Uwe Zimmermann, Technische Universität Braunschweig, Deutschland

Textul de pe ultima copertă

Die Mathematische Optimierung gehört aufgrund rasanter wissenschaftlicher Entwicklung und weitreichender Anwendungsbreite zu den Eckpunkten eines Mathematikstudiums. Dieses Buch legt mit einer Einführung in die Lineare und Konvexe Optimierung eine solide Basis für komplexere Themen der Diskreten und Nichtlinearen Optimierung.  Bei Studierenden werden nur Grundkenntnisse der Linearen Algebra und Analysis vorausgesetzt, wie sie im ersten Studienjahr jedes mathematisch fundierten Bachelorstudiums vermittelt werden. Bei Auswahl, Umfang und Aufbau stützen sich die Autoren auf langjährige Erfahrungen mit einschlägigen Vorlesungen an den technischen Universitäten Braunschweig und Graz. Das Buch eignet sich als Grundlage zu Vorlesungen der Linearen Optimierung (ca. 4 SWS) und der Konvexen Optimierung (ca. 2 SWS) im Bachelorstudium. Es enthält mehr Material als hierfür erforderlich, so dass Dozenten Raum und Anreiz für subjektive Schwerpunkte oder thematische Straffung geboten wird.