Electrical Power Unit Commitment: Deterministic and Two-Stage Stochastic Programming Models and Algorithms: SpringerBriefs in Energy
Autor Yuping Huang, Panos M. Pardalos, Qipeng P. Zhengen Limba Engleză Paperback – 13 ian 2017
The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation
Din seria SpringerBriefs in Energy
- Preț: 338.95 lei
- Preț: 338.95 lei
- Preț: 368.49 lei
- Preț: 369.78 lei
- Preț: 466.82 lei
- Preț: 343.36 lei
- Preț: 367.32 lei
- Preț: 369.03 lei
- Preț: 468.11 lei
- Preț: 172.77 lei
- Preț: 372.44 lei
- Preț: 368.67 lei
- Preț: 370.36 lei
- Preț: 368.87 lei
- Preț: 370.15 lei
- Preț: 336.13 lei
- Preț: 369.78 lei
- Preț: 370.36 lei
- Preț: 435.40 lei
- Preț: 348.83 lei
- Preț: 404.02 lei
- Preț: 370.15 lei
- Preț: 368.08 lei
- Preț: 372.44 lei
- Preț: 369.23 lei
- Preț: 368.67 lei
- Preț: 470.02 lei
- 15% Preț: 454.49 lei
- Preț: 467.20 lei
- Preț: 367.71 lei
- Preț: 371.48 lei
- Preț: 368.67 lei
- Preț: 401.19 lei
- 15% Preț: 453.04 lei
- Preț: 405.89 lei
- Preț: 368.08 lei
- Preț: 366.78 lei
- Preț: 368.67 lei
- Preț: 469.07 lei
- Preț: 381.71 lei
- Preț: 371.48 lei
- Preț: 368.08 lei
- 15% Preț: 454.01 lei
- Preț: 369.23 lei
- Preț: 366.95 lei
- Preț: 467.93 lei
- Preț: 371.85 lei
- Preț: 366.78 lei
- Preț: 469.82 lei
- Preț: 370.52 lei
Preț: 434.67 lei
Nou
Puncte Express: 652
Preț estimativ în valută:
83.20€ • 86.48$ • 68.91£
83.20€ • 86.48$ • 68.91£
Carte tipărită la comandă
Livrare economică 04-18 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781493967667
ISBN-10: 1493967665
Pagini: 120
Ilustrații: VIII, 93 p. 24 illus., 16 illus. in color.
Dimensiuni: 155 x 235 x 6 mm
Greutate: 0.16 kg
Ediția:1st ed. 2017
Editura: Springer Us
Colecția Springer
Seria SpringerBriefs in Energy
Locul publicării:New York, NY, United States
ISBN-10: 1493967665
Pagini: 120
Ilustrații: VIII, 93 p. 24 illus., 16 illus. in color.
Dimensiuni: 155 x 235 x 6 mm
Greutate: 0.16 kg
Ediția:1st ed. 2017
Editura: Springer Us
Colecția Springer
Seria SpringerBriefs in Energy
Locul publicării:New York, NY, United States
Cuprins
Introduction.- Deterministic Unit Commitment Models and Algorithms.- Two-Stage Stochastic Programming Models and Algorithms.- Nomenclature.- Renewable Energy Scenario Generation.
Recenzii
“A short, carefully written and accessible text, despite the mathematical complexity, the reader is provided with a comprehensive view of the problem allowing to quickly reach know-how in the handling of various models and algorithms aiming to formulate and reach solutions for it. Obviously interesting for both academics and practitioners in energy production and planning domains.” ( Manuel Alberto M. Ferreira, Acta Scientiae et Intellectus, Vol. 4 (04), 2018)
Textul de pe ultima copertă
This volume in the SpringerBriefs in Energy series offers a systematic review of unit commitment (UC) problems in electrical power generation. It updates texts written in the late 1990s and early 2000s by including the fundamentals of both UC and state-of-the-art modeling as well as solution algorithms and highlighting stochastic models and mixed-integer programming techniques.
The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation
The UC problems are mostly formulated as mixed-integer linear programs, although there are many variants. A number of algorithms have been developed for, or applied to, UC problems, including dynamic programming, Lagrangian relaxation, general mixed-integer programming algorithms, and Benders decomposition. In addition the book discusses the recent trends in solving UC problems, especially stochastic programming models, and advanced techniques to handle large numbers of integer- decision variables due to scenario propagation
Caracteristici
Is the first book since the early 2000s to focus on emerging trends in UC problems Focuses on stochastic programming models and advanced techniques to handle large numbers of integer decision variables due to scenario propagation Includes supplementary material: sn.pub/extras