Environmental Systems Engineering and Economics
Autor Robert Willis, Brad A. Finneyen Limba Engleză Hardback – 30 noi 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 392.44 lei 6-8 săpt. | |
Springer Us – 30 oct 2012 | 392.44 lei 6-8 săpt. | |
Hardback (1) | 398.28 lei 6-8 săpt. | |
Springer Us – 30 noi 2003 | 398.28 lei 6-8 săpt. |
Preț: 398.28 lei
Nou
Puncte Express: 597
Preț estimativ în valută:
76.26€ • 79.41$ • 63.27£
76.26€ • 79.41$ • 63.27£
Carte tipărită la comandă
Livrare economică 15 februarie-01 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781402076695
ISBN-10: 140207669X
Pagini: 488
Ilustrații: XIII, 468 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.82 kg
Ediția:2004
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 140207669X
Pagini: 488
Ilustrații: XIII, 468 p.
Dimensiuni: 155 x 235 x 32 mm
Greutate: 0.82 kg
Ediția:2004
Editura: Springer Us
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction to Environmental Systems Engineering.- 1.1 Introduction.- 1.2 Systems Engineering.- 1.3 Mathematical Models.- 1.4 The Systems Engineering Problem.- 1.5 Systems Engineering Problems.- 1.6 The Model Building Process.- 1.7 Simulation Modeling.- 1.8 Optimization Modeling.- References.- Problems.- 2. An Introduction to Optimization Theory.- 2.1 Introduction.- 2.2 Classification of Optimization Models.- 2.3 Geometry of the Mathematical Optimization Problem.- 2.4 Nonlinear Optimization and Types of Maxima.- 2.5 Convex Sets and Functions.- 2.6 Weierstrass Theorems.- 2.7 The Local-Global Theorem.- 2.8 The Kuhn-Tucker Conditions.- 2.9 The Kuhn-Tucker Theorem.- 2.10 Interpretation of the Lagrange Multipliers.- 2.11 The Saddle Point Problem.- 2.12 Maximin Dual Problem.- References.- Problems.- 3. Microeconomics: Theory of Production.- 3.1 Introduction.- 3.2 The Competitive Economy.- 3.3 The Production Function.- 3.4 Theory of the Firm.- 3.5 Maximum Output Model.- 3.6 Production Optimization.- 3.7 Comparative Statics of the Firm.- 3.8 Public Project Evaluation.- 3.9 Case Study 1— Agricultural Benefits.- References.- Problems.- 4. Microeconomics: Theory of the Household.- 4.1 Introduction.- 4.2 Commodity Space and Preference Relations.- 4.3 Theory of the Household.- 4.4 Comparative Statics.- 4.5 General Equilibrium.- 4.6 Market Equilibrium.- References.- Problems.- 5. Engineering Economics.- 5.1 Introduction.- 5.2 The Time Value of Money.- 5.3 Engineering Economic Formulas.- 5.4 Evaluation of Alternatives.- 5.5 Present Worth Method.- 5.6 Annual Worth Method.- 5.7 Benefit Cost Ratio.- 5.8 Internal Rate of Return.- 5.9 Depreciation and Income Tax Analysis.- 5.10 Inflation.- References.- Problems.- 6. Linear Programming.- 6.1 Introduction.- 6.2 Optimality of LinearProgramming Problems.- 6.3 Standard Form.- 6.4 Basic and Basic Feasible Solutions.- 6.5 The Simplex Algorithm.- 6.6 The Simplex Tableau.- 6.7 The Two-Phase Method.- 6.8 General Summary of the Simplex Algorithm.- 6.9 Duality.- 6.10 Matrix Representation of the Simplex Method.- 6.11 Economic Interpretation of the Dual Problem.- 6.12 The Revised Simplex Method.- 6.13 Sensitivity Analysis.- 6.14 Large-Scale Linear Programming Models.- 6.15 Case Study 1 Groundwater Planning.- References.- Problems.- 7. Nonlinear Programming.- 7.1 Introduction.- 7.2 Unconstrained Optimization Methods.- 7.3 Gradient-Based Methods.- 7.4 Constrained Optimization Methods.- 7.5 Case Study 1 North China Plain Water Management.- 7.6 Dynamic Programming.- 7.7 Case Study 2 Water Quality Management.- 7.8 linked Simulation-Optimization Methodology.- 7.9 Case Study 3 Management of Saltwater Intrusion.- 7.10 Case Study 4 Groundwater Remediation.- 7.11 Multiobjective Optimization.- 7.12 Case Study 5 Equity in Water Quality Management.- References.- Problems.- Appendix A. Review of Mathematics.- A.1 Introduction.- A.2 Analysis.- A.3 Vectors and Matrices.- A.4 Matrix Operations.- A.5 Determinants and the Matrix Inverse.- A.6 Quadratic Forms.- A.7 Scalar, Vector, and Matrix Derivatives.- A.8 Directional Derivative.- A.9 Eigenvalues and Eigenvectors.- A.10 Implicit Function Theorem.- A.ll Taylor Series.- A.12 Leibnitz’s Rule.- References.- Appendix B. Classical Optimization.- B.1 Introduction.- B.2 The Unconstrained Optimization Problem.- B.3 The Lagrange Multiplier Method.- B.4 The Lagrange Multiplier.- References.