Equations in Mathematical Physics: A practical course
Autor V.P. Pikulin Traducere de A. Iacob Autor Stanislav I. Pohozaeven Limba Engleză Paperback – 23 aug 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 372.80 lei 6-8 săpt. | |
Birkhäuser Basel – 23 aug 2014 | 372.80 lei 6-8 săpt. | |
Hardback (1) | 564.15 lei 6-8 săpt. | |
Birkhauser Basel – 31 iul 2001 | 564.15 lei 6-8 săpt. |
Preț: 372.80 lei
Nou
Puncte Express: 559
Preț estimativ în valută:
71.34€ • 75.04$ • 59.43£
71.34€ • 75.04$ • 59.43£
Carte tipărită la comandă
Livrare economică 03-17 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034895033
ISBN-10: 3034895038
Pagini: 220
Ilustrații: VIII, 207 p. 1 illus.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:2001
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
ISBN-10: 3034895038
Pagini: 220
Ilustrații: VIII, 207 p. 1 illus.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:2001
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1. Elliptic problems.- 1.1 The Dirichlet problem for the Laplace equation in an annulus.- 1.2 Examples of Dirichlet problems in an annulus.- 1.3 The interior and exterior Dirichlet problems.- 1.4 The Poisson integral for the disc. Complex form. Solution of the Dirichlet problem when the boundary condition is a rational function R(sin ?, cos ?).- 1.5 The interior and exterior Dirichlet problems.- 1.6 Boundary value problems for the Poisson equation in a disc and in an annulus.- 1.7 Boundary value problems for the Laplace and Poisson equations in a rectangle.- 1.8 Boundary value problems for the Laplace and Poisson equations in a bounded cylinder.- 1.9 Boundary value problems for the Laplace and Poisson equations in a ball.- 1.10 Boundary value problems for the Helmholtz equations.- 1.11 Boundary value problem for the Helmoltz equation in a cylinder.- 1.12 Boundary value problems for the Helmoltz equation in a disc.- 1.13 Boundary value problems for the Helmoltz equation in a ball.- 1.14 Guided electromagnetic waves.- 1.15 The method of conformal mappings (for the solution of boundary value problems in the plane).- 1.16 The Green function method.- 1.17 Other methods.- 1.18 Problems for independent study.- 1.19 Answers.- 2. Hyperbolic problems.- 2.1 The travelling-wave method.- 2.2 The method of selection of particular solutions.- 2.3 The Fourier integral transform method.- 2.4 The Laplace integral transform met hod.- 2.5 The Hankel integral transform method.- 2.6 The method of standing waves. Oscillations of a bounded string.- 2.7 Some examples of mixed problems for the equation of oscillations of a string.- 2.8 The Fourier method. Oscillations of a rectangular membrane.- 2.9 The Fourier method. Oscillations of a circular membrane.- 2.10 The Fourier method. Oscillationsof a beam.- 2.11 The perturbation method.- 2.12 Problems for independent study.- 2.13 Answers.- Chaper 3. Parabolic problems.- 3.1 The Fourier integral transform method.- 3.2 The Lapalce integral transform method.- 3.3 The Fourier method (method of separation of variables).- 3.4 A modification of the method of separation of variables for solving the Cauchy problem.- 3.5 Problems for independent study.- 3.6 Answers.- References.
Descriere
Descriere de la o altă ediție sau format:
The aim of the present book is to demontstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type.
The aim of the present book is to demontstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type.