Cantitate/Preț
Produs

Explorations in Topology: Map Coloring, Surfaces and Knots

Autor David Gay
en Limba Engleză Hardback – 10 dec 2013
Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses.
The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research.
Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology.


  • Students begin to solve substantial problems from the start
  • Ideas unfold through the context of a storyline, and students become actively involved
  • The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material
Citește tot Restrânge

Preț: 91156 lei

Preț vechi: 124871 lei
-27% Nou

Puncte Express: 1367

Preț estimativ în valută:
17446 18165$ 14743£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780124166486
ISBN-10: 0124166482
Pagini: 332
Ilustrații: Illustrations
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.61 kg
Ediția:2
Editura: ELSEVIER SCIENCE

Cuprins

CHAPTER 1: ACME makes maps and considers coloring themCHAPTER 2: ACME adds tours to its servicesCHAPTER 3: ACME collects data from maps CHAPTER 4: ACME gathers more data, proves a theorem, and returns to coloring mapsCHAPTER 5: ACME’s lawyer proves the four color conjectureCHAPTER 6: ACME adds doughnuts to its repertoireCHAPTER 7: ACME considers the Möbius stripCHAPTER 8: ACME creates new worlds --- Klein bottle and other surfacesCHAPTER 9: ACME makes order out of chaos --- surface sum and Euler numbersCHAPTER 10: ACME classifies surfacesCHAPTER 11: ACME encounters the fourth dimensionCHAPTER 12: ACME colors maps on surfaces --- Heawood’s estimateCHAPTER 13: ACME gets all tied up with knotsCHAPTER 14: Where to go from here --- Projects

Recenzii

"...the tasks that are asked of the reader are challenging and require clear thinking. This text could be an exiting tool for self study or a non-traditional course that is not just based on lectures." --Zentralblatt MATH, Sep-14

"Each chapter ends with a section marked "Notes", typically about two pages long, which gives a somewhat broader perspective of the material covered in that chapter, typically placing each topic in historical context, and sometimes giving precise definitions and statements of theorems." --MAA.org, May 4, 2014