Cantitate/Preț
Produs

Sheaves on Manifolds: With a Short History. «Les débuts de la théorie des faisceaux». By Christian Houzel: Grundlehren der mathematischen Wissenschaften, cartea 292

Autor Masaki Kashiwara, Pierre Schapira
en Limba Engleză Hardback – 29 aug 1990
From the reviews: This book is devoted to the study of sheaves by microlocal methods..(it) may serve as a reference source as well as a textbook on this new subject. Houzel's historical overview of the development of sheaf theory will identify important landmarks for students and will be a pleasure to read for specialists. Math. Reviews 92a (1992). The book is clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics.(...)The book can be strongly recommended to a younger mathematician enthusiastic to assimilate a new range of techniques allowing flexible application to a wide variety of problems. Bull. L.M.S. (1992)
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 88574 lei  6-8 săpt.
  Springer Berlin, Heidelberg – dec 2010 88574 lei  6-8 săpt.
Hardback (1) 89136 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 29 aug 1990 89136 lei  6-8 săpt.

Din seria Grundlehren der mathematischen Wissenschaften

Preț: 89136 lei

Preț vechi: 108701 lei
-18% Nou

Puncte Express: 1337

Preț estimativ în valută:
17058 17772$ 14183£

Carte tipărită la comandă

Livrare economică 10-24 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540518617
ISBN-10: 3540518614
Pagini: 528
Ilustrații: X, 512 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.89 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Grundlehren der mathematischen Wissenschaften

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

A Short History: Les débuts de la théorie des faisceaux.- I. Homological algebra.- II. Sheaves.- III. Poincaré-Verdier duality and Fourier-Sato transformation.- IV. Specialization and microlocalization.- V. Micro-support of sheaves.- VI. Micro-support and microlocalization.- VII. Contact transformations and pure sheaves.- VIII. Constructible sheaves.- IX. Characteristic cycles.- X. Perverse sheaves.- XI. Applications to O-modules and D-modules.- Appendix: Symplectic geometry.- Summary.- A.1. Symplectic vector spaces.- A.2. Homogeneous symplectic manifolds.- A.3. Inertia index.- Exercises to the Appendix.- Notes.- List of notations and conventions.