Expository Moments for Pseudo Distributions: Behaviormetrics: Quantitative Approaches to Human Behavior, cartea 2
Autor Haruhiko Ogasawaraen Limba Engleză Paperback – 3 ian 2024
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 867.29 lei 6-8 săpt. | |
Springer Nature Singapore – 3 ian 2024 | 867.29 lei 6-8 săpt. | |
Hardback (1) | 873.10 lei 6-8 săpt. | |
Springer Nature Singapore – 2 ian 2023 | 873.10 lei 6-8 săpt. |
Din seria Behaviormetrics: Quantitative Approaches to Human Behavior
- 18% Preț: 758.45 lei
- 24% Preț: 670.29 lei
- 18% Preț: 926.28 lei
- 18% Preț: 753.71 lei
- 15% Preț: 614.90 lei
- 18% Preț: 754.93 lei
- 18% Preț: 878.64 lei
- 15% Preț: 672.42 lei
- 15% Preț: 668.45 lei
- 18% Preț: 866.96 lei
- 18% Preț: 1092.48 lei
- 18% Preț: 916.35 lei
- 18% Preț: 1084.50 lei
- 18% Preț: 767.63 lei
- 18% Preț: 913.27 lei
- 18% Preț: 862.51 lei
- 18% Preț: 698.05 lei
- 26% Preț: 405.88 lei
- 26% Preț: 524.34 lei
Preț: 867.29 lei
Preț vechi: 1057.67 lei
-18% Nou
Puncte Express: 1301
Preț estimativ în valută:
165.100€ • 173.01$ • 138.19£
165.100€ • 173.01$ • 138.19£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811935275
ISBN-10: 9811935270
Pagini: 343
Ilustrații: XII, 343 p. 23 illus., 7 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.5 kg
Ediția:1st ed. 2022
Editura: Springer Nature Singapore
Colecția Springer
Seria Behaviormetrics: Quantitative Approaches to Human Behavior
Locul publicării:Singapore, Singapore
ISBN-10: 9811935270
Pagini: 343
Ilustrații: XII, 343 p. 23 illus., 7 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.5 kg
Ediția:1st ed. 2022
Editura: Springer Nature Singapore
Colecția Springer
Seria Behaviormetrics: Quantitative Approaches to Human Behavior
Locul publicării:Singapore, Singapore
Cuprins
The Sectionally Truncated Normal Distribution.- Normal Moments Under Stripe Truncation and the Real-Valued Poisson Distribution.- The Basic Parabolic Cylinder Distribution and its Multivariate Extension.- The Pseudo-Normal (PN) Distribution.- The Kurtic-Normal (KN) Distribution.- The Normal-Normal (NN) Distribution.- The Decompositions of the PN and NN Distributed Variables.- The Truncated Pseudo-Normal (TPN) and Truncated Normal-Normal (TNN) Distributions.- The Student t- and Pseudo-t (PT) Distributions: Various Expressions of Mixtures.- Multivariate Measures of Skewness and Kurtosis.
Notă biografică
Haruhiko Ogasawara is Professor Emeritus, Otaru University of Commerce.
Textul de pe ultima copertă
This book provides expository derivations for moments of a family of pseudo distributions, which is an extended family of distributions including the pseudo normal (PN) distributions recently proposed by the author. The PN includes the skew normal (SN) derived by A. Azzalini and the closed skew normal (CSN) obtained by A. Domínguez-Molina, G. González-Farías, and A. K. Gupta as special cases. It is known that the CSN includes the SN and other various distributions as special cases, which shows that the PN has a wider variety of distributions. The SN and CSN have symmetric and skewed asymmetric distributions. However, symmetric distributions are restricted to normal ones. On the other hand, symmetric distributions in the PN can be non-normal as well as normal. In this book, for the non-normal symmetric distributions, the term “kurtic normal (KN)” is used, where the coined word “kurtic” indicates “mesokurtic, leptokurtic, or platykurtic” used in statistics. The variety of the PN was made possible using stripe (tigerish) and sectional truncation in univariate and multivariate distributions, respectively. The proofs of the moments and associated results are not omitted and are often given in more than one method with their didactic explanations.
Caracteristici
Shows explications and extensions of the pseudo normal (PN) family of distributions recently proposed by the author Gives the moments of the PN without omitting proofs with didactic explanations using more than one method in many cases Derives the pseudo Student t (PT)-distribution, which is a non-normal counterpart of the PN and is a member of the family of pseudo distributions