Face Detection and Gesture Recognition for Human-Computer Interaction: The International Series in Video Computing, cartea 1
Autor Ming-Hsuan Yang, Narendra Ahujaen Limba Engleză Hardback – 31 aug 2001
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.69 lei 6-8 săpt. | |
Springer Us – 9 noi 2012 | 640.69 lei 6-8 săpt. | |
Hardback (1) | 647.79 lei 6-8 săpt. | |
Springer Us – 31 aug 2001 | 647.79 lei 6-8 săpt. |
Preț: 647.79 lei
Preț vechi: 809.73 lei
-20% Nou
Puncte Express: 972
Preț estimativ în valută:
123.97€ • 127.90$ • 104.92£
123.97€ • 127.90$ • 104.92£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792374091
ISBN-10: 0792374096
Pagini: 182
Ilustrații: XII, 182 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.48 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria The International Series in Video Computing
Locul publicării:New York, NY, United States
ISBN-10: 0792374096
Pagini: 182
Ilustrații: XII, 182 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.48 kg
Ediția:2001
Editura: Springer Us
Colecția Springer
Seria The International Series in Video Computing
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. Introduction.- 1. Face Detection.- 2. Gesture Recognition.- 3. Book Overview.- 2. Detecting Faces in Still Images.- 1. Introduction.- 2. Detecting Faces In A Single Image.- 3. Face Image Databases and Performance Evaluation.- 4. Discussion and Conclusion.- 3. Recognizing Hand Gestures Using Motion Trajectories.- 1. Introduction.- 2. Motivation and Approach.- 3. Motion Segmentation.- 4. Skin Color Model.- 5. Geometric Analysis.- 6. Motion Trajectories.- 7. Recognizing Motion Patterns Using Time-Delay Neural Network.- 8. Experiments.- 9. Discussion and Conclusion.- 4. Skin Color Model.- 1. Proposed Mixture Model.- 2. Statistical Tests.- 3. Experimental Results.- 4. Applications.- 5. Discussion and Conclusion.- 5. Face Detection Using Multimodal Density Models.- 1. Introduction.- 2. Previous Work.- 3. Mixture of Factor Analyzers.- 4. Mixture of Linear Spaces Using Fisher’s Linear Discriminant.- 5. Experiments.- 6. Discussion and Conclusion.- 6. Learning to Detect Faces with SNoW.- 1. Introduction.- 2. Previous Work.- 3. SNoW Learning Architecture.- 4. Learning to Detect Faces.- 5. Empirical Results.- 6. Analyzing SNoW: Theoretical and Empirical Results.- 7. Generation and Efficiency.- 8. Discussion and Conclusion.- 7. Conclusion and Future Work.- 1. Conclusion.- 2. Future Work.- Appendices.- A– Covariance of Two Normally Distributed Variables.- B– Conditional Distributions of Multiple Correlation Coefficient.- References.