Feature Extraction, Construction and Selection: A Data Mining Perspective: The Springer International Series in Engineering and Computer Science, cartea 453
Editat de Huan Liu, Hiroshi Motodaen Limba Engleză Hardback – 31 aug 1998
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1278.68 lei 6-8 săpt. | |
Springer Us – 11 oct 2012 | 1278.68 lei 6-8 săpt. | |
Hardback (1) | 1283.16 lei 6-8 săpt. | |
Springer Us – 31 aug 1998 | 1283.16 lei 6-8 săpt. |
Din seria The Springer International Series in Engineering and Computer Science
- 24% Preț: 1041.97 lei
- 20% Preț: 643.50 lei
- 18% Preț: 1225.62 lei
- 18% Preț: 965.02 lei
- 20% Preț: 646.12 lei
- 18% Preț: 948.79 lei
- 20% Preț: 646.62 lei
- 15% Preț: 637.46 lei
- 20% Preț: 643.83 lei
- 18% Preț: 949.23 lei
- 20% Preț: 644.48 lei
- 20% Preț: 994.92 lei
- 20% Preț: 645.97 lei
- 18% Preț: 946.87 lei
- 20% Preț: 995.57 lei
- 18% Preț: 956.99 lei
- 20% Preț: 644.98 lei
- 15% Preț: 649.54 lei
- 18% Preț: 950.21 lei
- 18% Preț: 1221.38 lei
- 18% Preț: 957.62 lei
- 15% Preț: 643.99 lei
- 18% Preț: 948.47 lei
- 18% Preț: 947.35 lei
- 20% Preț: 1284.65 lei
- 20% Preț: 1633.95 lei
- 20% Preț: 1285.78 lei
Preț: 1283.16 lei
Preț vechi: 1603.95 lei
-20% Nou
Puncte Express: 1925
Preț estimativ în valută:
245.56€ • 254.81$ • 205.25£
245.56€ • 254.81$ • 205.25£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792381969
ISBN-10: 0792381963
Pagini: 410
Ilustrații: XXIV, 410 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.74 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
ISBN-10: 0792381963
Pagini: 410
Ilustrații: XXIV, 410 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.74 kg
Ediția:1998
Editura: Springer Us
Colecția Springer
Seria The Springer International Series in Engineering and Computer Science
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Less is More.- 2 Feature Weighting for Lazy Learning Algorithms.- 3 The Wrapper Approach.- 4 Data-driven Constructive Induction: Methodology and Applications.- 5 Selecting Features by Vertical Compactness of Data.- 6 Relevance Approach to Feature Subset Selection.- 7 Novel Methods for Feature Subset Selection with Respect to Problem Knowledge.- 8 Feature Subset Selection Using A Genetic Algorithm.- 9 A Relevancy Filter for Constructive Induction.- 10 Lexical Contextual Relations for the Unsupervised Discovery of Texts Features.- 11 Integrated Feature Extraction Using Adaptive Wavelets.- 12 Feature Extraction via Neural Networks.- 13 Using Lattice-based Framework as a Tool for Feature Extraction.- 14 Constructive Function Approximation.- 15 A Comparison of Constructing Different Types of New Feature for Decision Tree Learning.- 16 Constructive Induction: Covering Attribute Spectrum.- 17 Feature Construction Using Fragmentary Knowledge.- 18 Constructive Induction on Continuous Spaces.- 19 Evolutionary Feature Space Transformation.- 20 Feature Transformation by Function Decomposition.- 21 Constructive Induction of Cartesian Product Attributes.- 22 Towards Automatic Fractal Feature Extraction for Image Recognition.- 23 Feature Transformation Strategies for a Robot Learning Problem.- 24 Interactive Genetic Algorithm Based Feature Selection and Its Application to Marketing Data Analysis.