Finite Difference Methods on Irregular Networks: International Series of Numerical Mathematics, cartea 82
Autor HEINRICHen Limba Engleză Paperback – 8 mar 2012
Din seria International Series of Numerical Mathematics
- 5% Preț: 651.86 lei
- Preț: 411.93 lei
- Preț: 399.12 lei
- Preț: 364.38 lei
- Preț: 386.99 lei
- Preț: 382.95 lei
- Preț: 425.09 lei
- Preț: 393.35 lei
- Preț: 392.75 lei
- 15% Preț: 588.65 lei
- 15% Preț: 588.33 lei
- Preț: 392.60 lei
- Preț: 395.25 lei
- 15% Preț: 589.30 lei
- Preț: 392.60 lei
- Preț: 459.75 lei
- Preț: 390.63 lei
- 15% Preț: 587.50 lei
- Preț: 392.21 lei
- Preț: 397.38 lei
- 15% Preț: 647.27 lei
- 15% Preț: 581.62 lei
- Preț: 397.38 lei
- 15% Preț: 591.75 lei
- Preț: 395.47 lei
- 15% Preț: 589.80 lei
- Preț: 393.13 lei
- Preț: 398.74 lei
- Preț: 408.16 lei
- Preț: 347.41 lei
- 15% Preț: 650.86 lei
- 15% Preț: 645.28 lei
- Preț: 396.62 lei
- 15% Preț: 652.81 lei
- 15% Preț: 591.29 lei
- Preț: 390.63 lei
- 15% Preț: 648.05 lei
- Preț: 388.13 lei
- 15% Preț: 638.76 lei
Preț: 385.08 lei
Nou
Puncte Express: 578
Preț estimativ în valută:
73.69€ • 76.47$ • 61.60£
73.69€ • 76.47$ • 61.60£
Carte tipărită la comandă
Livrare economică 17-31 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034871983
ISBN-10: 3034871988
Pagini: 212
Ilustrații: 206 p.
Dimensiuni: 170 x 244 x 11 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3034871988
Pagini: 212
Ilustrații: 206 p.
Dimensiuni: 170 x 244 x 11 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1. Introduction.- 1.1. Preliminary remarks.- 1.2. Scope of monograph.- 1.3. Plan of monograph, comments.- 2. Boundary Value Problems and Irregular Networks.- 2.1. A class of elliptic problems.- 2.2. Irregular networks.- 2.3. Secondary networks and boxes.- 3. Construction of Finite Difference Approximations.- 3.1. The principle of approximation.- 3.2. Finite difference schemes via method (PB).- 3.3. Finite difference schemes via method (MD).- 4. Analytical and Matrix Properties of the Difference Operators Ah.- 4.1. General remarks and notations.- 4.2. Monotonicity and other matrix properties.- 4.3. Scalar products, norms and a trace theorem.- 4.4. Green’s formula, inequalities of Friedrichs-Poincaré- type and the positive definiteness of Ah.- 4.5. A priori estimates for Ah using the W12- and C-norm.- 5. Error Estimates and Convergence.- 5.1. Error splitting and approaches to the error estimation.- 5.2. The error æ of the principal part of PB-operators.- 5.3. The error æ of the principal part of MD-operators.- 5.4. The error ?N for PB- MD-schemes.- 5.5. Convergence for W22(?)-solutions.- 6. Finite Difference Schemes for Nonsymmetric Problems.- 6.1. Construction of finite difference approximations.- 6.2. Properties of the difference operators $${\text{A}}_{{\text{h}}}^{{\text{b}}}$$.- 6.3. The error convection term.- 7. Concluding Remarks.- Appendices.- 1. Appendix DI: Relations of Differential and Integral calculus, norms.- 2. Appendix ES: Estimation of functionals on Sobolev spaces.- 3. Appendix EX: Extension of functions.- 4. Appendix GE: Some relations of geometry.- 5. Appendix IM: Imbedding and trace theorems.- 6. Appendix TR: Affine transformations of coordinates and functional.- References.- List of Figures.- Abbreviations.- Notations.