Integral Equations: Theory and Numerical Treatment: International Series of Numerical Mathematics, cartea 120
Autor Wolfgang Hackbuschen Limba Engleză Hardback – iun 1995
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 644.49 lei 6-8 săpt. | |
Birkhäuser Basel – 27 sep 2011 | 644.49 lei 6-8 săpt. | |
Hardback (1) | 650.86 lei 6-8 săpt. | |
Birkhäuser Basel – iun 1995 | 650.86 lei 6-8 săpt. |
Din seria International Series of Numerical Mathematics
- 5% Preț: 651.86 lei
- Preț: 411.93 lei
- Preț: 399.12 lei
- Preț: 364.38 lei
- Preț: 386.99 lei
- Preț: 382.95 lei
- Preț: 425.09 lei
- Preț: 393.35 lei
- Preț: 392.75 lei
- 15% Preț: 588.65 lei
- 15% Preț: 588.33 lei
- Preț: 392.60 lei
- Preț: 395.25 lei
- 15% Preț: 589.30 lei
- Preț: 392.60 lei
- Preț: 459.75 lei
- Preț: 390.63 lei
- 15% Preț: 587.50 lei
- Preț: 392.21 lei
- Preț: 397.38 lei
- 15% Preț: 647.27 lei
- 15% Preț: 581.62 lei
- Preț: 397.38 lei
- 15% Preț: 591.75 lei
- Preț: 395.47 lei
- 15% Preț: 589.80 lei
- Preț: 393.13 lei
- Preț: 398.74 lei
- Preț: 408.16 lei
- Preț: 347.41 lei
- 15% Preț: 645.28 lei
- Preț: 396.62 lei
- 15% Preț: 652.81 lei
- 15% Preț: 591.29 lei
- Preț: 390.63 lei
- 15% Preț: 648.05 lei
- Preț: 388.13 lei
- 15% Preț: 638.76 lei
Preț: 650.86 lei
Preț vechi: 765.72 lei
-15% Nou
Puncte Express: 976
Preț estimativ în valută:
124.56€ • 129.87$ • 103.52£
124.56€ • 129.87$ • 103.52£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764328719
ISBN-10: 3764328711
Pagini: 380
Ilustrații: XIV, 362 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.71 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3764328711
Pagini: 380
Ilustrații: XIV, 362 p.
Dimensiuni: 156 x 234 x 26 mm
Greutate: 0.71 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria International Series of Numerical Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Introduction.- 1.1 Integral Equations.- 1.2 Basics from Analysis.- 1.3 Basics from Functional Analysis.- 1.4 Basics from Numerical Mathematics.- 2 Volterra Integral Equations.- 2.1 Theory of Volterra Integral Equations of the Second Kind.- 2.2 Numerical Solution by Quadrature Methods.- 2.3 Further Numerical Methods.- 2.4 Linear Volterra Integral Equations of Convolution Type.- 2.5 The Volterra Integral Equations of the First Kind.- 3 Theory of Fredholm Integral Equations of the Second Kind.- 3.1 The Fredholm Integral Equation of the Second Kind.- 3.2 Compactness of the Integral Operator K.- 3.3 Finite Approximability of the Integral Operator K.- 3.4 The Image Space of K.- 3.5 Solution of the Fredholm Integral Equation of the Second Kind.- 4 Numerical Treatment of Fredholm Integral Equations of the Second Kind.- 4.1 General Considerations.- 4.2 Discretisation by Kernel Approximation.- 4.3 Projection Methods in General.- 4.4 Collocation Method.- 4.5 Galerkin Method.- 4.6 Additional Comments Concerning Projection Methods.- 4.7 Discretisation by Quadrature: The Nyström Method.- 4.8 Supplements.- 5 Multi-Grid Methods for Solving Systems Arising from Integral Equations of the Second Kind.- 5.1 Preliminaries.- 5.2 Stability and Convergence (Discrete Formulation).- 5.3 The Hierarchy of Discrete Problems.- 5.4 Two-Grid Iteration.- 5.5 Multi-Grid Iteration.- 5.6 Nested Iteration.- 6 Abel’s Integral Equation.- 6.1 Notations and Examples.- 6.2 A Necessary Condition for a Bounded Solution.- 6.3 Euler’s Integrals.- 6.4 Inversion of Abel’s Integral Equation.- 6.5 Reformulation for Kernels k(x,y)/(x-y)?.- 6.6 Numerical Methods for Abel’s Integral Equation.- 7 Singular Integral Equations.- 7.1 The Cauchy Principal Value.- 7.2 The Cauchy Kernel.- 7.3 The Singular IntegralEquation.- 7.4 Application to the Dirichlet Problem for Laplace’s Equation.- 7.5 Hypersingular Integrals.- 8 The Integral Equation Method.- 8.1 The Single-Layer Potential.- 8.2 The Double-Layer Potential.- 8.3 The Hypersingular Integral Equation.- 8.4 Synopsis: Integral Equations for the Laplace Equation.- 8.5 The Integral Equation Method for Other Differential Equations.- 9 The Boundary Element Method.- 9.1 Construction of the Boundary Element Method.- 9.2 The Boundary Elements.- 9.3 Multi-Grid Methods.- 9.4 Integration and Numerical Quadrature.- 9.5 Solution of Inhomogeneous Equations.- 9.6 Computation of the Potential.- 9.7 The Panel Clustering Algorithm.