Flows in Networks: Princeton Landmarks in Mathematics and Physics
Autor Lester Randolph Ford, D. R. Fulkersonen Limba Engleză Hardback – 18 apr 2016
Originally published in 1962. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 312.55 lei 3-5 săpt. | |
Princeton University Press – 15 feb 2016 | 312.55 lei 3-5 săpt. | |
Hardback (1) | 673.58 lei 6-8 săpt. | |
Princeton University Press – 18 apr 2016 | 673.58 lei 6-8 săpt. |
Din seria Princeton Landmarks in Mathematics and Physics
- Preț: 314.37 lei
- Preț: 312.55 lei
- Preț: 235.99 lei
- 19% Preț: 643.95 lei
- Preț: 344.52 lei
- 19% Preț: 680.28 lei
- 19% Preț: 700.42 lei
- 23% Preț: 793.56 lei
- Preț: 465.41 lei
- 19% Preț: 515.29 lei
- 23% Preț: 941.15 lei
- Preț: 448.93 lei
- Preț: 406.20 lei
- 19% Preț: 705.26 lei
- 19% Preț: 515.29 lei
- 19% Preț: 652.21 lei
Preț: 673.58 lei
Preț vechi: 831.58 lei
-19% Nou
Puncte Express: 1010
Preț estimativ în valută:
128.89€ • 134.85$ • 107.07£
128.89€ • 134.85$ • 107.07£
Carte tipărită la comandă
Livrare economică 03-17 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780691651842
ISBN-10: 0691651841
Pagini: 212
Dimensiuni: 164 x 241 x 18 mm
Greutate: 0.48 kg
Editura: Princeton University Press
Seria Princeton Landmarks in Mathematics and Physics
ISBN-10: 0691651841
Pagini: 212
Dimensiuni: 164 x 241 x 18 mm
Greutate: 0.48 kg
Editura: Princeton University Press
Seria Princeton Landmarks in Mathematics and Physics
Descriere
This book presents simple, elegant methods for dealing, both in theory and in application, with a variety of problems that have formulations in terms of flows in capacity-constrained networks. Since the theoretical considerations lead in all cases to computationally efficient solution procedures, the hook provides a common meeting ground for person