Cantitate/Preț
Produs

Foundations of Agnostic Statistics

Autor Peter M. Aronow, Benjamin T. Miller
en Limba Engleză Paperback – 30 ian 2019
Reflecting a sea change in how empirical research has been conducted over the past three decades, Foundations of Agnostic Statistics presents an innovative treatment of modern statistical theory for the social and health sciences. This book develops the fundamentals of what the authors call agnostic statistics, which considers what can be learned about the world without assuming that there exists a simple generative model that can be known to be true. Aronow and Miller provide the foundations for statistical inference for researchers unwilling to make assumptions beyond what they or their audience would find credible. Building from first principles, the book covers topics including estimation theory, regression, maximum likelihood, missing data, and causal inference. Using these principles, readers will be able to formally articulate their targets of inquiry, distinguish substantive assumptions from statistical assumptions, and ultimately engage in cutting-edge quantitative empirical research that contributes to human knowledge.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 27881 lei  3-5 săpt.
  Cambridge University Press – 30 ian 2019 27881 lei  3-5 săpt.
Hardback (1) 67028 lei  6-8 săpt.
  Cambridge University Press – 30 ian 2019 67028 lei  6-8 săpt.

Preț: 27881 lei

Nou

Puncte Express: 418

Preț estimativ în valută:
5338 5559$ 4429£

Carte disponibilă

Livrare economică 23 ianuarie-06 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781316631140
ISBN-10: 1316631141
Pagini: 314
Ilustrații: 35 b/w illus.
Dimensiuni: 151 x 228 x 14 mm
Greutate: 0.5 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States

Cuprins

Introduction; Part I. Probability: 1. Probability theory; 2. Summarizing distributions; Part II. Statistics: 3. Learning from random samples; 4. Regression; 5. Parametric models; Part III. Identification: 6. Missing data; 7. Causal inference.

Notă biografică


Descriere

Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.