FPGA-based Digital Convolution for Wireless Applications: Springer Series in Wireless Technology
Autor Lei Guanen Limba Engleză Paperback – 30 apr 2018
FPGAs or generic all programmable devices will soon become widespread, serving as the “brains” of all types of real-time smart signal processing systems, like smart networks, smart homes and smart cities. The book examines digital convolution by bringing together the following main elements: the fundamental theory behind the mathematical formulae together with corresponding physical phenomena; virtualized algorithm simulation together with benchmark real-time FPGA implementations; and detailed, state-of-the-art case studies on wireless applications, including popular linear convolution in digital front ends (DFEs); nonlinear convolution in digital pre-distortion (DPD) enabled high-efficiency wireless RF transceivers; and fast linear convolution in massive multiple-input multiple-output (MIMO) systems.
After reading this book, students and professionals will be able to:
· Understand digital convolution with inside-out information: discover what convolution is, why it is important and how it works.
· Enhance their FPGA design skills, i.e., enhance their FPGA-related prototyping capability with model-based hands-on examples.
· Rapidly expand their digital signal processing (DSP) blocks: to examine how to rapidly and efficiently create (DSP) functional blocks on a programmable FPGA chip as a reusable intellectual property (IP) core.
· Upgrade their expertise as both “thinkers” and “doers”: minimize/close the gap between mathematical equations and FPGA implementations for existing and emerging wireless applications.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 769.58 lei 6-8 săpt. | |
Springer International Publishing – 30 apr 2018 | 769.58 lei 6-8 săpt. | |
Hardback (1) | 775.39 lei 6-8 săpt. | |
Springer International Publishing – 23 ian 2017 | 775.39 lei 6-8 săpt. |
Preț: 769.58 lei
Preț vechi: 938.51 lei
-18% Nou
Puncte Express: 1154
Preț estimativ în valută:
147.33€ • 151.52$ • 122.22£
147.33€ • 151.52$ • 122.22£
Carte tipărită la comandă
Livrare economică 18 februarie-04 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319847931
ISBN-10: 3319847937
Ilustrații: XVII, 151 p. 128 illus., 61 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in Wireless Technology
Locul publicării:Cham, Switzerland
ISBN-10: 3319847937
Ilustrații: XVII, 151 p. 128 illus., 61 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of the original 1st ed. 2017
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in Wireless Technology
Locul publicării:Cham, Switzerland
Cuprins
Preface.- Chapter 1. Introduction.- Chapter 2. FPGA and Digital Signal Processing.- Chapter 3. FPGA-based Linear Convolution.- Chapter 4. FPGA-based Nonlinear Convolution.- Chapter 5. Advanced FPGA-based Fast Linear Convolution.- Chapter 6. FPGA-based DSP System Verification.- References.
Notă biografică
Dr. Lei Guan has been actively working as wireless communications researcher, FPGA designer, and
digital system architect for 10 years with extensive R&D experience in FPGA & MATLAB based
digital signal processing, particularly using Xilinx FPGAs and all programmable SoCs for digitally assisted wireless RF systems and fully tunable software defined radio (SDR) systems. He is a
member of technical staff at Mobile Radio Research, Nokia Bell Labs. He holds a B.E. degree in
Communications Engineering and a M.E. degree in Telecommunication Systems from Harbin
Institute of Technology (HIT), P. R. China (Top-five University in China in engineering subject) and a
Ph.D. degree in Electronic Engineering from University College Dublin, Ireland.
Textul de pe ultima copertă
This book presents essential perspectives on digital convolutions in wireless communications systems and illustrates their corresponding efficient real-time field-programmable gate array (FPGA) implementations. Covering these digital convolutions from basic concept to vivid simulation/illustration, the book is also supplemented with MS PowerPoint presentations to aid in comprehension.
FPGAs or generic all programmable devices will soon become widespread, serving as the “brains” of all types of real-time smart signal processing systems, like smart networks, smart homes and smart cities. The book examines digital convolution by bringing together the following main elements: the fundamental theory behind the mathematical formulae together with corresponding physical phenomena; virtualized algorithm simulation together with benchmark real-time FPGA implementations; and detailed, state-of-the-art case studies on wireless applications, including popular linear convolution in digital front ends (DFEs); nonlinear convolution in digital pre-distortion (DPD) enabled, high-efficiency wireless RF transceivers; and fast linear convolution in massive multiple-input multiple-output (MIMO) systems.
After reading this book, students and professionals will be able to:
· Understand digital convolution with inside-out information: discover what convolution is, why it is important and how it works.
· Enhance their FPGA design skills, i.e., enhance their FPGA-related prototyping capability with model-based hands-on examples.
· Rapidly expand their digital signal processing (DSP) blocks: to examine how to rapidly and efficiently create (DSP) functional blocks on a programmable FPGA chip as a reusable intellectual property (IP) core.
· Upgrade their expertise as both “thinkers” and “doers”: minimize/close the gap between mathematical equations and FPGA implementations for existing and emerging wireless applications.
FPGAs or generic all programmable devices will soon become widespread, serving as the “brains” of all types of real-time smart signal processing systems, like smart networks, smart homes and smart cities. The book examines digital convolution by bringing together the following main elements: the fundamental theory behind the mathematical formulae together with corresponding physical phenomena; virtualized algorithm simulation together with benchmark real-time FPGA implementations; and detailed, state-of-the-art case studies on wireless applications, including popular linear convolution in digital front ends (DFEs); nonlinear convolution in digital pre-distortion (DPD) enabled, high-efficiency wireless RF transceivers; and fast linear convolution in massive multiple-input multiple-output (MIMO) systems.
After reading this book, students and professionals will be able to:
· Understand digital convolution with inside-out information: discover what convolution is, why it is important and how it works.
· Enhance their FPGA design skills, i.e., enhance their FPGA-related prototyping capability with model-based hands-on examples.
· Rapidly expand their digital signal processing (DSP) blocks: to examine how to rapidly and efficiently create (DSP) functional blocks on a programmable FPGA chip as a reusable intellectual property (IP) core.
· Upgrade their expertise as both “thinkers” and “doers”: minimize/close the gap between mathematical equations and FPGA implementations for existing and emerging wireless applications.
Caracteristici
Builds a bridge to close the gap between “thinkers” and “doers” Presents essential perspectives on digital convolutions in wireless communications systems, one of the most important and widely used functions in digital signal processing Covers digital convolutions in wireless communications systems from basic concept to vivid simulation/illustration Includes supplementary material: sn.pub/extras