Fracture Scaling
Editat de Zdenek P. Bazant, Y. Rajapakseen Limba Engleză Paperback – 16 oct 2012
These papers can be grouped under five major themes:
- Micromechanical analysis
- Size effects in fiber composites
- Scaling and heterogeneity
- Computational aspects and nonlocal or gradient models
- Size effects in concrete, ice and soils
This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted.
In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 811.62 lei 38-45 zile | |
SPRINGER NETHERLANDS – 16 oct 2012 | 811.62 lei 38-45 zile | |
Hardback (1) | 948.13 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 mai 1999 | 948.13 lei 6-8 săpt. |
Preț: 811.62 lei
Preț vechi: 1067.92 lei
-24% Nou
Puncte Express: 1217
Preț estimativ în valută:
155.40€ • 161.82$ • 128.93£
155.40€ • 161.82$ • 128.93£
Carte tipărită la comandă
Livrare economică 10-17 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789401059657
ISBN-10: 9401059659
Pagini: 448
Ilustrații: VIII, 435 p.
Dimensiuni: 195 x 260 x 24 mm
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9401059659
Pagini: 448
Ilustrații: VIII, 435 p.
Dimensiuni: 195 x 260 x 24 mm
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Micromechanical Analysis.- Models of interface separation accompanied by plastic dissipation at multiple scales.- The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films.- Size effect relations associated with cohesive zone type fracture at a blunt stress concentration.- Scaling laws for elastoplastic fracture.- 2. Size Effects in Fiber Composites.- Scale effects in the initiation of cracking of a scarf joints.- Size effect in fracture of unidirectional composite plates.- Size effect on compression strength of fiber composites failing by kink band propagation.- Is there a thickness effect on compressive strength of unnotched composite laminates?.- 3. Scaling and Heterogeneity.- Failure and scaling properties of a softening interface connected to an elastic block.- A Model for predicting grain boundary cracking in polycrystalline viscoplastic materials including scale effects.- Effect of strain gradients on the size effect of concrete in uniaxial tension.- Scaling phenomena due to fractal contact in concrete and rock fractures.- Fractals and fractal scaling in fracture mechanics.- 4. Computational Aspects and Nonlocal or Gradient Models.- A unified framework for concrete damage and fracture models including size effects.- Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture.- Strain gradient interpretation of size effects.- Use of neural networks for fitting of FE probabilistic scaling model parameters.- 5. Size Effects in Concrete, Ice and Soils.- Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta.- Scale effects on the in-situ tensile strength and fractureof ice. Part II: First-year sea ice at Resolute, N.W.T..- Size effect and inverse analysis in concrete fracture.- Size effect in shallow and deep notched quasi-brittle structures.- Size effect on the concrete cone pullout load.- Fracture and size effect characters of cemented sand.- Author index.