Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras
Autor Joseph Muscaten Limba Engleză Paperback – aug 2014
Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 364.19 lei 3-5 săpt. | +26.34 lei 7-13 zile |
Springer International Publishing – aug 2014 | 364.19 lei 3-5 săpt. | +26.34 lei 7-13 zile |
Springer International Publishing – 29 feb 2024 | 400.81 lei 3-5 săpt. | +34.54 lei 7-13 zile |
Preț: 364.19 lei
Preț vechi: 438.78 lei
-17% Nou
Puncte Express: 546
Preț estimativ în valută:
69.72€ • 72.47$ • 57.81£
69.72€ • 72.47$ • 57.81£
Carte disponibilă
Livrare economică 15-29 ianuarie 25
Livrare express 01-07 ianuarie 25 pentru 36.33 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319067278
ISBN-10: 3319067273
Pagini: 432
Ilustrații: XI, 420 p. 75 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.6 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
ISBN-10: 3319067273
Pagini: 432
Ilustrații: XI, 420 p. 75 illus.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.6 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Locul publicării:Cham, Switzerland
Public țintă
Upper undergraduateCuprins
Introduction.- Distance.- Convergence and Continuity.- Completeness and Separability.- Connectedness.- Compactness.- Normed Spaces.- Continuous Linear Maps.- Main Examples.- Hilbert Spaces.- Banach Spaces.- Differentiation and Integration.- Banach Algebras.- Spectral Theory.- C∗-Algebras.
Notă biografică
Professor Joseph Muscat graduated at the University of Oxford and obtained his Ph.D. from Princeton University with a thesis on the Maxwell-Klein-Gordon equation on curved space-time. He has written several papers on the applications of functional analysis to inverse problems in the biomedical field and is a co-author of the novel ACSP method in EEG signal processing.
Textul de pe ultima copertă
This textbook is an introduction to functional analysis suited to final year undergraduates or beginning graduates. Its various applications of Hilbert spaces, including least squares approximation, inverse problems, and Tikhonov regularization, should appeal not only to mathematicians interested in applications, but also to researchers in related fields.
Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.
Functional Analysis adopts a self-contained approach to Banach spaces and operator theory that covers the main topics, based upon the classical sequence and function spaces and their operators. It assumes only a minimum of knowledge in elementary linear algebra and real analysis; the latter is redone in the light of metric spaces. It contains more than a thousand worked examples and exercises, which make up the main body of the book.
Caracteristici
Provides a self-contained introduction to functional analysis, assuming only real analysis and linear algebra Presents the essential aspects of metric spaces, Hilbert spaces, Banach spaces and Banach algebras Includes interesting applications of Hilbert spaces such as least squares approximation and inverse problems Prepares the reader for graduate-level mathematical analysis Includes supplementary material: sn.pub/extras