Functional Imaging and Modeling of the Heart: 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings: Lecture Notes in Computer Science, cartea 12738
Editat de Daniel B. Ennis, Luigi E. Perotti, Vicky Y. Wangen Limba Engleză Paperback – 18 iun 2021
The 65 revised full papers were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: advanced cardiac and cardiovascular image processing; cardiac microstructure: measures and models; novel approaches to measuring heart deformation; cardiac mechanics: measures and models; translational cardiac mechanics; modeling electrophysiology, ECG, and arrhythmia; cardiovascular flow: measures and models; and atrial microstructure, modeling, and thrombosis prediction.
Din seria Lecture Notes in Computer Science
- 20% Preț: 571.63 lei
- 20% Preț: 336.71 lei
- 20% Preț: 333.46 lei
- 20% Preț: 662.76 lei
- 20% Preț: 330.23 lei
- 20% Preț: 747.79 lei
- 20% Preț: 438.67 lei
- 20% Preț: 369.12 lei
- 20% Preț: 315.76 lei
- 20% Preț: 584.40 lei
- 20% Preț: 148.66 lei
- 20% Preț: 122.89 lei
- 20% Preț: 315.18 lei
- 20% Preț: 256.26 lei
- 20% Preț: 1040.03 lei
- 20% Preț: 504.56 lei
- Preț: 402.62 lei
- 20% Preț: 346.40 lei
- 20% Preț: 301.94 lei
- 20% Preț: 237.99 lei
- 5% Preț: 365.59 lei
- 20% Preț: 309.89 lei
- 20% Preț: 321.95 lei
- 20% Preț: 310.25 lei
- 20% Preț: 334.68 lei
- Preț: 373.56 lei
- 20% Preț: 172.68 lei
- 20% Preț: 1386.07 lei
- 20% Preț: 315.76 lei
- 20% Preț: 1003.66 lei
- 20% Preț: 444.17 lei
- 20% Preț: 567.60 lei
- 20% Preț: 632.22 lei
- 17% Preț: 360.18 lei
- 20% Preț: 538.28 lei
- 20% Preț: 335.08 lei
- 20% Preț: 307.68 lei
- 20% Preț: 343.16 lei
- 20% Preț: 641.78 lei
- 20% Preț: 579.56 lei
- 20% Preț: 1053.45 lei
- 15% Preț: 568.74 lei
- Preț: 389.47 lei
- 20% Preț: 333.46 lei
- 20% Preț: 607.38 lei
- 20% Preț: 326.97 lei
Preț: 652.28 lei
Preț vechi: 815.36 lei
-20% Nou
Puncte Express: 978
Preț estimativ în valută:
124.82€ • 131.81$ • 103.87£
124.82€ • 131.81$ • 103.87£
Carte tipărită la comandă
Livrare economică 13-27 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030787097
ISBN-10: 3030787095
Pagini: 690
Ilustrații: XVIII, 690 p. 326 illus., 301 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.98 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
ISBN-10: 3030787095
Pagini: 690
Ilustrații: XVIII, 690 p. 326 illus., 301 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.98 kg
Ediția:1st ed. 2021
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Image Processing, Computer Vision, Pattern Recognition, and Graphics
Locul publicării:Cham, Switzerland
Cuprins
Population-based personalization of geometric models of myocardial infarction.- Impact of Image Resolution and Resampling on Motion Tracking of the Left Chambers from Cardiac Scans.- Shape Constraints in Deep Learning for Robust 2D Echocardiography Analysis.- Image-Derived Geometric Characteristics Predict Abdominal Aortic Aneurysm Growth in a Machine Learning Model.- Cardiac MRI Left Ventricular Segmentation and Function Quantification Using Pre-trained Neural Networks.- Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left Ventricle Delineation from Myocardial Velocity Mapping.- Whole Heart Anatomical Refinement from CCTA using Extrapolation and Parcellation.- Optimisation of Left Atrial Feature Tracking using Retrospective Gated Computed Tomography Images.- Assessment of geometric models for the approximation of aorta cross-sections.- Improved High Frame Rate Speckle Tracking for Echocardiography.- Efficient Model Monitoring for Quality Control in Cardiac ImageSegmentation.- Domain adaptation for automatic aorta segmentation of 4D flow magnetic resonance imaging data from multiple vendor scanners.- A multi-step machine learning approach for short axis MR images segmentation.- Diffusion biomarkers in chronic myocardial infarction.- Spatially constrained Deep Learning approach for myocardial T1 mapping.- A methodology for accessing the local arrangement of the sheetlets that make up the extracellular heart tissue.- A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium.- Quantitative Interpretation of Myocardial Fiber Structure in the Left and Right Ventricle of an Equine Heart using Diffusion Tensor Cardiovascular Magnetic Resonance Imaging.- Analysis of Location-Dependent Cardiomyocyte Branching.- Systematic Study of Joint Influence of Angular Resolution and Noise in Cardiac Diffusion Tensor Imaging.- Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strain in Tagged MRI.- Investigation of the impact of normalization on the study of interactions between myocardial shape and deformation.- Reproducibility of Left Ventricular CINE DENSE Strain in Pediatric Subjects with Duchenne Muscular Dystrophy.- M-SiSSR: Regional Endocardial Function using Multilabel Simultaneous Subdivision Surface Registration.- CNN-based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI.- Multiscale Graph Convolutional Networks for Cardiac Motion Analysis.- An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice.- Sensitivity of Myocardial Stiffness Estimates to Inter-observer Variability in LV Geometric Modelling.- A computational approach on sensitivity of left ventricular wall strains to fiber orientation.- A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Heart Phantoms.- Modeling patient-specific periaortic interactions with static and dynamic structures using a moving heterogeneous elastic foundation boundarycondition.- An Exploratory Assessment of Focused Septal Growth in Hypertrophic Cardiomyopathy.- Parameter Estimation in a Rule-Based Fiber Orientation model from End Systolic Strains Using the Reduced Order Unscented Kalman Filter.- Effects of fibre orientation on electrocardiographic and mechanical functions in a computational human biventricular model.- Model-assisted time-synchronization of cardiac MR image and catheter pressure data.- From clinical imaging to patient-specific computational model: Rapid adaptation of the Living Heart Human Model to a case of aortic stenosis.- Cardiac support for the right ventricle: effects of timing on hemodynamics-biomechanics tradeoff.- In vivo pressure-volume loops and chamber stiffness estimation using real-time 3D echocardiography and left ventricular catheterization – application to post-heart transplant patients .- In silico mapping of the omecamtiv mecarbil effects from the sarcomere to the whole-heart and back again.- High-Speed Simulation of the 3D Behavior of Myocardium Using a Neural Network PDE Approach.- On the interrelationship between left ventricle infarction geometry and ischemic mitral regurgitation grade.- Cardiac modeling for Multisystem Inflammatory Syndrome in Children (MIS-C, PIMS-TS).- Personal-by-design: a 3D Electromechanical Model of the Heart Tailored for Personalisation.- Scar-Related Ventricular Arrhythmia Prediction from Imaging using Explainable Deep Learning.- Deep Adaptive Electrocardiographic Imaging with Generative Forward Model for Error Reduction.- EP-Net 2.0: Out-of-Domain Generalisation for Deep Learning Models of Cardiac Electrophysiology.- Simultaneous Multi-Heartbeat ECGI Solution with a Time-Varying Forward Model: a Joint Inverse Formulation.- The Effect of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations.- Uncertainty Quantification of the Effects of Segmentation Variability in ECGI.- Spiral Waves Generation using an Eikonal-reaction Cardiac Electrophysiology Model.- Simplified Electrophysiology Modeling Framework to Assess Ventricular Arrhythmia Risk in Infarcted Patients.- Sensitivity analysis of a smooth muscle cell electrophysiological model..- A volume source method for solving ECGI inverse problem.- Fast and Accurate Uncertainty Quantification for the ECG with Random Electrodes Location.- Quantitative Hemodynamics in Aortic Dissection: Comparing in vitro MRI with FSI Simulation in a Compliant Model.- 3-D Intraventricular Vector Flow mapping Using Triplane Doppler Echo.- The role of extra-coronary vascular conditions that affect coronary fractional flow reserve estimation..- In-silico analysis of the influence of pulmonary vein configuration on left atrial haemodynamics and thrombus formation in a large cohort.- Shape analysis and computational fluid simulations to assess feline left atrial function and thrombogenesis.- Using the Universal Atrial Coordinate system for MRI and electroanatomic data registration in patient-specific left atrial model construction and simulation.- Geometric Deep Learning for the Assessment of Thrombosis Risk in the Left Atrial Appendage.- Learning atrial fiber orientations and conductivity tensors from intracardiac maps using physics-informed neural networks.- The Effect of Ventricular Myofibre Orientation on Atrial Dynamics.- Intra-Cardiac Signatures of Atrial Arrhythmias Identified By Machine Learning and Traditional Features.- Computational Modelling of the Role of Atrial Fibrillation on Cerebral Blood Perfusion..