Cantitate/Preț
Produs

Fundamental Algorithms for Permutation Groups: Lecture Notes in Computer Science, cartea 559

Autor Gregory Butler
en Limba Engleză Paperback – 27 noi 1991
This is the first-ever book on computational group theory.It provides extensive and up-to-date coverage of thefundamental algorithms for permutation groups with referenceto aspects of combinatorial group theory, soluble groups,and p-groups where appropriate.The book begins with a constructive introduction to grouptheory and algorithms for computing with small groups,followed by a gradual discussion of the basic ideas of Simsfor computing with very large permutation groups, andconcludes with algorithms that use group homomorphisms, asin the computation of Sylowsubgroups. No background ingroup theory is assumed.The emphasis is on the details of the data structures andimplementation which makes the algorithms effective whenapplied to realistic problems. The algorithms are developedhand-in-hand with the theoretical and practicaljustification.All algorithms are clearly described,examples are given, exercises reinforce understanding, anddetailed bibliographical remarks explain the history andcontext of the work.Much of the later material on homomorphisms, Sylowsubgroups, and soluble permutation groups is new.
Citește tot Restrânge

Din seria Lecture Notes in Computer Science

Preț: 37953 lei

Preț vechi: 47441 lei
-20% Nou

Puncte Express: 569

Preț estimativ în valută:
7266 7552$ 6024£

Carte tipărită la comandă

Livrare economică 06-20 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540549550
ISBN-10: 3540549552
Pagini: 256
Ilustrații: XII, 244 p.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.36 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computer Science

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Group theory background.- List of elements.- Searching small groups.- Cayley graph and defining relations.- Lattice of subgroups.- Orbits and schreier vectors.- Regularity.- Primitivity.- Inductive foundation.- Backtrack search.- Base change.- Schreier-Sims method.- Complexity of the Schreier-Sims method.- Homomorphisms.- Sylow subgroups.- P-groups and soluble groups.- Soluble permutation groups.- Some other algorithms.