Fundamental Directions in Mathematical Fluid Mechanics: Advances in Mathematical Fluid Mechanics
Editat de Giovanni P. Galdi, John G. Heywood, Rolf Rannacheren Limba Engleză Paperback – 14 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.71 lei 6-8 săpt. | |
Birkhäuser Basel – 14 oct 2012 | 640.71 lei 6-8 săpt. | |
Hardback (1) | 647.08 lei 6-8 săpt. | |
Birkhäuser Basel – sep 2000 | 647.08 lei 6-8 săpt. |
Din seria Advances in Mathematical Fluid Mechanics
- 15% Preț: 639.73 lei
- Preț: 387.75 lei
- Preț: 400.26 lei
- 15% Preț: 646.62 lei
- 15% Preț: 671.79 lei
- 20% Preț: 596.59 lei
- 18% Preț: 909.96 lei
- Preț: 397.59 lei
- 15% Preț: 656.43 lei
- 15% Preț: 635.65 lei
- 18% Preț: 806.40 lei
- 18% Preț: 798.50 lei
- 24% Preț: 601.61 lei
- 18% Preț: 741.23 lei
- 15% Preț: 495.68 lei
- 15% Preț: 500.59 lei
- 15% Preț: 472.36 lei
- 18% Preț: 906.96 lei
- 15% Preț: 526.50 lei
- 15% Preț: 585.40 lei
- 18% Preț: 791.25 lei
- 15% Preț: 466.66 lei
- 18% Preț: 786.04 lei
- 15% Preț: 531.41 lei
- 15% Preț: 658.88 lei
Preț: 640.71 lei
Preț vechi: 753.77 lei
-15% Nou
Puncte Express: 961
Preț estimativ în valută:
122.62€ • 126.50$ • 103.78£
122.62€ • 126.50$ • 103.78£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034895613
ISBN-10: 3034895615
Pagini: 304
Ilustrații: VIII, 293 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Advances in Mathematical Fluid Mechanics
Locul publicării:Basel, Switzerland
ISBN-10: 3034895615
Pagini: 304
Ilustrații: VIII, 293 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Advances in Mathematical Fluid Mechanics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
An Introduction to the Navier-Stokes Initial-Boundary Value Problem.- 0 Introduction.- 1 Some considerations on the structure of the Navier-Stokes equations.- 2 The Leray-Hopf weak solutions and related properties.- 3 Existence of weak solutions.- 4 The energy equality and uniqueness of weak solutions.- 5 Regularity of weak solutions.- 6 More regular solutions and the “théorème de structure”.- 7 Existence in the class Lr (0,T; Ls(?), 2/r +n/s = 1, and further regularity properties.- References.- Spectral Approximation of Navier-Stokes Equations.- 1 Mathematical foundation and different paradigms of spectral methods.- 2 Stokes and Navier-Stokes equations.- 3 Time-differentiation of Navier Stokes equations.- 4 Domain decomposition methods.- 5 Numerical results.- References.- Simple Proofs of Bifurcation Theorems.- 1 Introduction.- 2 Bifurcation of equilibrium solutions.- 3 Bifurcation of periodic solutions.- 4 Generalizations.- Appendix A: Proof of Proposition 3.1.- References.- On The Steady Transport Equation.- 1 Introduction.- 2 Existence in W1,2 ? Lq for the scalar transport equation.- 3 Existence in W1,2 ? Lq for the scalar transport equation.- 4 Estimates for ???2,2, ???? and ?????1,2.- 5 Existence in Wm,2 (?), for any fixed m.- 6 Integration along characteristics.- References.- On the Existence and Uniqueness Theory for the Steady Compressible Viscous Flow.- 1 Introduction.- 2 Poisson-Stokes equations for isothermal flow.- 3 Main result.- 4 Iterative scheme.- 5 Regularity lemmas.- 6 Bounds for the iterates.- 7 Convergence of the iterates.- 8 Uniqueness in the ball of existence.- 9 Uniqueness reconsidered directly.- References.- Finite Element Methods for the Incompressible Navier-Stokes Equations.- 1 Introduction.- 2 Models of viscousflow.- 3 Spatial discretization by finite elements.- 4 Time discretization and linearization.- 5 Solution of the algebraic systems.- 6 A review of theoretical analysis.- 7 Error control and mesh adaptation.- 8 Extension to weakly compressible flows.- References.