Fundamentals of Charged Particle Transport in Gases and Condensed Matter: Monograph Series in Physical Sciences
Autor Robert Robson, Ronald White, Malte Hildebrandten Limba Engleză Hardback – 12 sep 2017
- The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations
- A complementary approach: Maxwell’s equations of change and fluid modeling
- Calculation of ion-atom scattering cross sections
- Extension to soft condensed matter, amorphous materials
- Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors
Robert Robson has held professorial positions in Japan, the USA and Australia, and was an Alexander von Humboldt Fellow at several universities in Germany. He is a Fellow of the American Physical Society.
Ronald White is Professor of Physics and Head of Physical Sciences at James Cook University, Australia.
Malte Hildebrandt is Head of the Detector Group in the Laboratory of Particle Physics at the Paul Scherrer Institut, Switzerland.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 313.57 lei 6-8 săpt. | |
CRC Press – 31 mar 2021 | 313.57 lei 6-8 săpt. | |
Hardback (1) | 1041.01 lei 6-8 săpt. | |
CRC Press – 12 sep 2017 | 1041.01 lei 6-8 săpt. |
Preț: 1041.01 lei
Preț vechi: 1406.85 lei
-26% Nou
Puncte Express: 1562
Preț estimativ în valută:
199.24€ • 210.18$ • 166.03£
199.24€ • 210.18$ • 166.03£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781498736367
ISBN-10: 149873636X
Pagini: 424
Ilustrații: 74
Dimensiuni: 156 x 234 x 29 mm
Greutate: 0.7 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Monograph Series in Physical Sciences
Locul publicării:Boca Raton, United States
ISBN-10: 149873636X
Pagini: 424
Ilustrații: 74
Dimensiuni: 156 x 234 x 29 mm
Greutate: 0.7 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Monograph Series in Physical Sciences
Locul publicării:Boca Raton, United States
Cuprins
Monograph Series in Physical Sciences
Preface
About the Authors
Glossary of Symbols and Acronyms
1 Introduction
I Kinetic Theory Foundations
2 Basic Theoretical Concepts: Phase and Configuration Space
3 Boltzmann Collision Integral, H-Theorem, and Fokker–Planck Equation
4 Interaction Potentials and Cross Sections
5 Kinetic Equations for Dilute Particles in Gases
6 Charged Particles in Condensed Matter
II Fluid Modelling in Configuration Space
7 Fluid Modelling: Foundations and First Applications
8 Fluid Models with Inelastic Collisions
9 Fluid Modelling with Loss and Creation Processes
10 Fluid Modelling in Condensed Matter
III Solutions of Kinetic Equations
11 Strategies and Regimes for Solution of Kinetic Equations
12 Numerical Techniques for Solution of Boltzmann’s Equation
13 Boundary Conditions, Diffusion Cooling, and a Variational Method
14 An Analytically Solvable Model
IV Special Topics
15 Temporal Non-Locality
16 The Franck–Hertz Experiment
17 Positron Transport in Soft-Condensed Matter with Application to PET
18 Transport in Electric and Magnetic Fields and Particle Detectors
19 Muons in Gases and Condensed Matter
20 Concluding Remarks
V Exercises and Appendices 331
Exercises
Appendix A Comparison of Kinetic Theory and Quantum Mechanics
Appendix B Inelastic and Ionization Collision Operators for Light Particles
Appendix C The Dual Eigenvalue Problem
Appendix D Derivation of the Exact Expression for np(k)
Appendix E Physical Constants and Useful Formulas
References
Index
Preface
About the Authors
Glossary of Symbols and Acronyms
1 Introduction
I Kinetic Theory Foundations
2 Basic Theoretical Concepts: Phase and Configuration Space
3 Boltzmann Collision Integral, H-Theorem, and Fokker–Planck Equation
4 Interaction Potentials and Cross Sections
5 Kinetic Equations for Dilute Particles in Gases
6 Charged Particles in Condensed Matter
II Fluid Modelling in Configuration Space
7 Fluid Modelling: Foundations and First Applications
8 Fluid Models with Inelastic Collisions
9 Fluid Modelling with Loss and Creation Processes
10 Fluid Modelling in Condensed Matter
III Solutions of Kinetic Equations
11 Strategies and Regimes for Solution of Kinetic Equations
12 Numerical Techniques for Solution of Boltzmann’s Equation
13 Boundary Conditions, Diffusion Cooling, and a Variational Method
14 An Analytically Solvable Model
IV Special Topics
15 Temporal Non-Locality
16 The Franck–Hertz Experiment
17 Positron Transport in Soft-Condensed Matter with Application to PET
18 Transport in Electric and Magnetic Fields and Particle Detectors
19 Muons in Gases and Condensed Matter
20 Concluding Remarks
V Exercises and Appendices 331
Exercises
Appendix A Comparison of Kinetic Theory and Quantum Mechanics
Appendix B Inelastic and Ionization Collision Operators for Light Particles
Appendix C The Dual Eigenvalue Problem
Appendix D Derivation of the Exact Expression for np(k)
Appendix E Physical Constants and Useful Formulas
References
Index
Notă biografică
Robert Robson, FAPS, FRMetS, completed a PhD in theoretical physics at the Australian National University in 1972. He has lectured and researched in physics and specializes in electron and positron transport in gases and soft condensed matter. He was Alexander von Humboldt Fellow at the University of Düsseldorf, Germany and held the Hitachi Chair of Electrical Engineering at Keio University, Japan.
Ronald White obtained his PhD in theoretical physics from James Cook University in 1997, and is now Associate Professor and Director of the JCU node of the Australian Research Council’s Centre of Excellence for Antimatter-Matter Studies. He specializes in kinetic theory and fluid modelling of charged particles in gases and soft matter.
Malte Hildebrandt completed his PhD in experimental physics at the University of Heidelberg in 1999, where he worked on the development of particle detectors for high energy particle physics. After a postdoc at the University of Zürich, he joined the Paul Scherrer Institut, and has been head of the detector group in the Laboratory of Particle Physics since 2009.
Ronald White obtained his PhD in theoretical physics from James Cook University in 1997, and is now Associate Professor and Director of the JCU node of the Australian Research Council’s Centre of Excellence for Antimatter-Matter Studies. He specializes in kinetic theory and fluid modelling of charged particles in gases and soft matter.
Malte Hildebrandt completed his PhD in experimental physics at the University of Heidelberg in 1999, where he worked on the development of particle detectors for high energy particle physics. After a postdoc at the University of Zürich, he joined the Paul Scherrer Institut, and has been head of the detector group in the Laboratory of Particle Physics since 2009.
Descriere
This book offers a cohesive overview on fundamental concepts and experimental approaches for transport of charged particles in gases and condensed matter. It covers electrons, ions, positrons, muons, and explains the connection between microscopic events and macroscopic measurements of currents in a non-equilibrium environment.