Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 1992–94: Operator Theory: Advances and Applications, cartea 77
Editat de Joram Lindenstrauss, Vitali Milmanen Limba Engleză Paperback – 12 oct 2011
Din seria Operator Theory: Advances and Applications
- 18% Preț: 890.54 lei
- 20% Preț: 574.08 lei
- 18% Preț: 1127.60 lei
- 15% Preț: 643.34 lei
- 18% Preț: 961.55 lei
- Preț: 395.63 lei
- 15% Preț: 648.05 lei
- 18% Preț: 737.71 lei
- 15% Preț: 653.14 lei
- Preț: 384.48 lei
- 15% Preț: 644.82 lei
- 15% Preț: 645.79 lei
- Preț: 402.00 lei
- 15% Preț: 650.04 lei
- 15% Preț: 660.83 lei
- 15% Preț: 639.08 lei
- 18% Preț: 940.09 lei
- 15% Preț: 648.05 lei
- Preț: 388.90 lei
- 18% Preț: 728.11 lei
- 20% Preț: 574.08 lei
- 15% Preț: 645.79 lei
- 18% Preț: 1128.89 lei
- 15% Preț: 646.11 lei
- 15% Preț: 648.89 lei
- 18% Preț: 745.33 lei
- 18% Preț: 1124.47 lei
- 15% Preț: 647.08 lei
- 15% Preț: 662.62 lei
- Preț: 392.75 lei
- 18% Preț: 960.96 lei
- 15% Preț: 646.43 lei
- 18% Preț: 738.37 lei
Preț: 394.51 lei
Nou
Puncte Express: 592
Preț estimativ în valută:
75.51€ • 78.53$ • 63.28£
75.51€ • 78.53$ • 63.28£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783034899024
ISBN-10: 3034899025
Pagini: 356
Ilustrații: 337 p.
Dimensiuni: 170 x 244 x 19 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
ISBN-10: 3034899025
Pagini: 356
Ilustrații: 337 p.
Dimensiuni: 170 x 244 x 19 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Operator Theory: Advances and Applications
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
?2-estimate for the euclidean norm on a convex body in isotropic position.- References.- Embedding ?n?-Cubes in low dimensional Schatten classes.- References.- Products of unconditional bodies.- 0 Introduction.- 1 The general Lozanovskii problem for products of unconditional bodies.- 2 Volumes of products of unconditional bodies.- References.- Remarks on Halasz-Montgomery type inequalities.- 1 Introduction.- 2 Proof of Proposition 1.- 3 Proof of Proposition 2.- 4 Zero-density estimates.- References.- Estimates for cone multipliers.- 0 Summary.- 1 L4-estimates.- 2 Kakeya type structures.- 3 A first L2-estimate.- 4 Fourier transform of measures on a cone.- 5 Application to cone multipliers.- References.- Remarks on Bourgain’s problem on slicing of convex bodies.- References.- A note on the Banach-Mazur distance to the cube.- 1 Introduction.- 2 Proof of the Proposition.- 3 Remark.- References.- Projection functions on higher rank Grassmannians.- 1 Introduction.- 2 Projection functions and surface area measures.- 3 The sizes of projection classes.- 4 Radon transforms and projection functions.- References.- On the volume of unions and intersections of balls in Euclidean space.- 1 Introduction.- 2 Volume of flowers in Sn?1 and ?n.- 3 Extension to special cases of N caps in Sn?1.- References.- Uniform non-equivalence between Euclidean and hyperbolic spaces.- 1 Introduction.- 2 Necessary definitions.- 3 The big spheres tangency.- 4 One negative result.- 5 The results.- 6 The proofs.- References.- A hereditarily indecomposable space with an asymptotic unconditional basis.- 1 Introduction.- 2 Some definitions and basic lemmas.- 3 The definition of the space and some of its properties.- 4 Proof of the main result.- References.- Proportional subspaces of spaces withunconditional basis have good volume properties.- 1 Introduction.- 2 Proofs.- References.- A remark about distortion.- References.- Symmetric distortion in ?2.- 1 Symmetric ABS in ?2.- 2 The ?r case.- References.- Asymptotic infinite-dimensional theory of Banach spaces.- 1 Asymptotic and permissible spaces.- 2 Asymptotic versions.- 3 Uniqueness of the asymptotic-?p structure.- 4 Duality of asymptotic-?p spaces.- 5 Complemented permissible subspaces.- References.- On the richness of the set of p’s in Krivine’s theorem.- 1 A space with no spreading model containing c0 or ?p.- 2 A space with a large nonshrinkable Krivine-p-set.- References.- Kolmogorov’s theorems in Fourier analysis.- 0 Introduction.- 1 Kolmogorov’s example of divergent Fourier Series.- 2 Kolmogorov’s weak type inequality.- 3 Kolmogorov’s rearrangement theorem.- References.- Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces.- 1 Incompatibility of Gâteaux and Fréchet differentiability results.- 2 Strange difference between Fréchet differentiability of Lipschitz functions and of Lipschitz mappings.- References.- Determinant inequalites with applications to isoperimetric inequalities.- 1 Introduction.- 2 Determinant estimates.- 3 Infinite determinants.- 4 Isoperimetric inequalities for simplices.- References.- Approximate John’s decompositions.- References.- Two remarks on 1-unconditional basic sequences in Lp, 3 ? p < ?.- References.- A concentration inequality for harmonic measures on the sphere.- 1 Introduction and notation.- 2 The concentration inequality.- 3 Some corollaries of Theorem 2.1.- 4 Exit times for convex symmetric bodies.- 5 Appendix.- References.- A concentration of measure phenomenon on uniformly convex bodies.- 1Maurey’s proof.- 2 Uniform convex spaces.- 3 An estimate for the floating body of Bdp.- References.- Embedding of ??k and a theorem of Alon and Milman.- References.- Are all sets of positive measure essentially convex?.- 1 Introduction.- 2 Gauss space.- 3 Some aspects of the solid case.- 4 Sets of sequences.- References.- Embedding subspaces of Lp in ?Np.- 1 Introduction.- 2 The iteration method and the random choice.- 3 Tree extraction.- 4 Entropy estimates.- 5 Main construction.- References.- Distortions on Schatten classes Cp.- 1 Preliminary remarks.- 2 Asymptotic sets in Cp.- References.- GAFA Seminar — List of Talks.