Periodic Homogenization of Elliptic Systems: Operator Theory: Advances and Applications, cartea 269
Autor Zhongwei Shenen Limba Engleză Hardback – 14 sep 2018
The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 572.45 lei 6-8 săpt. | |
Springer International Publishing – 24 ian 2019 | 572.45 lei 6-8 săpt. | |
Hardback (1) | 634.00 lei 6-8 săpt. | |
Springer International Publishing – 14 sep 2018 | 634.00 lei 6-8 săpt. |
Din seria Operator Theory: Advances and Applications
- Preț: 311.96 lei
- 20% Preț: 574.08 lei
- 20% Preț: 574.08 lei
- 18% Preț: 942.07 lei
- Preț: 393.93 lei
- 15% Preț: 634.96 lei
- 18% Preț: 722.79 lei
- 15% Preț: 639.94 lei
- Preț: 376.76 lei
- 15% Preț: 631.77 lei
- 15% Preț: 632.73 lei
- 15% Preț: 636.90 lei
- 15% Preț: 633.06 lei
- 15% Preț: 647.45 lei
- Preț: 381.09 lei
- 15% Preț: 626.15 lei
- 18% Preț: 713.38 lei
- 15% Preț: 634.96 lei
- 18% Preț: 730.25 lei
- 15% Preț: 630.33 lei
- 15% Preț: 632.73 lei
- 18% Preț: 1104.74 lei
- 18% Preț: 1106.00 lei
- 15% Preț: 635.76 lei
- 18% Preț: 1101.67 lei
- Preț: 387.70 lei
- 15% Preț: 649.24 lei
- 15% Preț: 633.36 lei
- Preț: 384.86 lei
- 18% Preț: 921.04 lei
- 18% Preț: 941.48 lei
Preț: 634.00 lei
Preț vechi: 745.89 lei
-15% Nou
Puncte Express: 951
Preț estimativ în valută:
121.35€ • 127.31$ • 100.66£
121.35€ • 127.31$ • 100.66£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319912134
ISBN-10: 3319912135
Pagini: 295
Ilustrații: IX, 291 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Birkhäuser
Seriile Operator Theory: Advances and Applications, Advances in Partial Differential Equations
Locul publicării:Cham, Switzerland
ISBN-10: 3319912135
Pagini: 295
Ilustrații: IX, 291 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.6 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Birkhäuser
Seriile Operator Theory: Advances and Applications, Advances in Partial Differential Equations
Locul publicării:Cham, Switzerland
Cuprins
Elliptic Systems of Second Order with Periodic Coeffcients.- Convergence Rates, Part I.- Interior Estimates.- Regularity for Dirichlet Problem.- Regularity for Neumann Problem.- Convergence Rates, Part II.- L2 Estimates in Lipschitz Domains.
Textul de pe ultima copertă
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions.
The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
Caracteristici
Provides a clear and concise exposition of an important and active area Contains a review of the classical theory of qualitative homogenization, and addresses the problem of convergence rates of solutions Includes convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions