Geometric Graphs and Arrangements: Some Chapters from Combinatorial Geometry: Advanced Lectures in Mathematics
Autor Stefan Felsneren Limba Engleză Paperback – 24 feb 2004
Din seria Advanced Lectures in Mathematics
- Preț: 322.31 lei
- Preț: 490.62 lei
- 15% Preț: 498.47 lei
- Preț: 416.71 lei
- 15% Preț: 441.51 lei
- Preț: 421.93 lei
- Preț: 494.48 lei
- 15% Preț: 466.45 lei
- Preț: 419.43 lei
- Preț: 315.02 lei
- Preț: 354.54 lei
- 19% Preț: 436.85 lei
- Preț: 283.88 lei
- Preț: 281.83 lei
- 20% Preț: 550.25 lei
- Preț: 450.33 lei
- 15% Preț: 593.73 lei
- Preț: 499.87 lei
- Preț: 317.30 lei
- 15% Preț: 584.58 lei
- Preț: 313.22 lei
- 18% Preț: 808.33 lei
Preț: 265.18 lei
Nou
Puncte Express: 398
Preț estimativ în valută:
50.75€ • 52.66$ • 42.42£
50.75€ • 52.66$ • 42.42£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783528069728
ISBN-10: 3528069724
Pagini: 184
Ilustrații: X, 170 p.
Dimensiuni: 170 x 240 x 10 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 2004
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advanced Lectures in Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3528069724
Pagini: 184
Ilustrații: X, 170 p.
Dimensiuni: 170 x 240 x 10 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 2004
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advanced Lectures in Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
1 Geometric Graphs: Turán Problems.- 1.1 What is a Geometric Graph?.- 1.2 Fundamental Concepts in Graph Theory.- 1.3 Planar Graphs.- 1.4 Outerplanar Graphs and Convex Geometric Graphs.- 1.5 Geometric Graphs without (k + 1)-Pairwise Disjoint Edges.- 1.6 Geometric Graphs without Parallel Edges.- 1.7 Notes and References.- 2 Schnyder Woods or How to Draw a Planar Graph?.- 2.1 Schnyder Labelings and Woods.- 2.2 Regions and Coordinates.- 2.3 Geodesic Embeddings of Planar Graphs.- 2.4 Dual Schnyder Woods.- 2.5 Order Dimension of 3-Polytopes.- 2.6 Existence of Schnyder Labelings.- 2.7 Notes and References.- 3 Topological Graphs: Crossing Lemma and Applications.- 3.1 Crossing Numbers.- 3.2 Bounds for the Crossing Number.- 3.3 Improving the Crossing Constant.- 3.4 Crossing Numbers and Incidence Problems.- 3.5 Notes and References.- 4 k-Sets and k-Facets.- 4.1 k-Sets in the Plane.- 4.2 Beyond the Plane.- 4.3 The Rectilinear Crossing Number of Kn.- 4.4 Notes and References.- 5 Combinatorial Problems for Sets of Points and Lines.- 5.1 Arrangements, Planes, Duality.- 5.2 Sylvester’s Problem.- 5.3 How many Lines are Spanned by n Points?.- 5.4 Triangles in Arrangements.- 5.5 Notes and References.- 6 Combinatorial Representations of Arrangements of Pseudolines.- 6.1 Marked Arrangements and Sweeps.- 6.2 Allowable Sequences and Wiring Diagrams.- 6.3 Local Sequences.- 6.4 Zonotopal Tilings.- 6.5 Triangle Signs.- 6.6 Signotopes and their Orders.- 6.7 Notes and References.- 7 Triangulations and Flips.- 7.1 Degrees in the Flip-Graph.- 7.2 Delaunay Triangulations.- 7.3 Regular Triangulations and Secondary Polytopes.- 7.4 The Associahedron and Catalan families.- 7.5 The Diameter of Gn and Hyperbolic Geometry.- 7.6 Notes and References.- 8 Rigidity and Pseudotriangulations.- 8.1 Rigidity,Motion and Stress.- 8.2 Pseudotriangles and Pseudotriangulations.- 8.3 Expansive Motions.- 8.4 The Polyhedron of of Pointed Pseudotriangulations.- 8.5 Expansive Motions and Straightening Linkages.- 8.6 Notes and References.
Recenzii
"The book is written in a pleasant and clear style, with generous pictures and lucid explanations. [...] I recommend this splendid litte book für PhD students and researchers who work or wish to work in discrete geometry".
Combinatorics, Probability and Computing (Cambridge University Press), 15/2006
"[The author] has contributed an introduction to this fascinating and mathematically challenging - yet intuitively accessible - field."
Monatshefte für Mathematik, 02/2006
Combinatorics, Probability and Computing (Cambridge University Press), 15/2006
"[The author] has contributed an introduction to this fascinating and mathematically challenging - yet intuitively accessible - field."
Monatshefte für Mathematik, 02/2006
Notă biografică
Prof. Dr. Stefan Felsner, Institut für Mathematik, Technische Universität Berlin, Germany.
Textul de pe ultima copertă
Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.
Caracteristici
Graph theory, geometry and combinatorics brought together to generate a wealth of beauty in ideas