Cantitate/Preț
Produs

The Basic Theory of Power Series: Advanced Lectures in Mathematics

Autor Jesús M. Ruiz
en Limba Engleză Paperback – 1993
The aim of these notes is to cover the basic algebraic tools and results behind the scenes in the foundations of Real and Complex Analytic Geometry. The author has learned the subject through the works of many mathematicians, to all of whom he is indebted. However, as the reader will immediately realize, he was specially influenced by the writings of S.S. Abhyankar and J .-C. Tougeron. In any case, the presentation of all topics is always as elementary as it can possibly be, even at the cost of making some arguments longer. The background formally assumed consists of: 1) Polynomials: roots, factorization, discriminant; real roots, Sturm's Theorem, formally real fields; finite field extensions, Primitive Element Theorem. 2) Ideals and modules: prime and maximal ideals; Nakayama's Lemma; localiza­ tion. 3) Integral dependence: finite ring extensions and going-up. 4) Noetherian rings: primary decomposition, associated primes, Krull's Theorem. 5) Krull dimension: chains of prime ideals, systems of parameters; regular systems of parameters, regular rings. These topics are covered in most texts on Algebra and/or Commutative Algebra. Among them we choose here as general reference the following two: • M. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra, 1969, Addison-Wesley: Massachusetts; quoted [A-McD] . • S. Lang: Algebra, 1965, Addison-Wesley: Massachusetts; quoted [L].
Citește tot Restrânge

Din seria Advanced Lectures in Mathematics

Preț: 43685 lei

Preț vechi: 53932 lei
-19% Nou

Puncte Express: 655

Preț estimativ în valută:
8363 8706$ 6885£

Carte tipărită la comandă

Livrare economică 28 ianuarie-03 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528065256
ISBN-10: 3528065257
Pagini: 148
Ilustrații: X, 134 p.
Dimensiuni: 162 x 229 x 8 mm
Ediția:1993
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advanced Lectures in Mathematics

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

I Power Series.- 1 Series of Real and Complex Numbers.- 2 Power Series.- 3 Rückert’s and Weierstrass’s Theorems.- II Analytic Rings and Formal Rings.- 1 Mather’s Preparation Theorem.- 2 Noether’s Projection Lemma.- 3 Abhyankar’s and Rückert’s Parametrization.- 4 Nagata’s Jacobian Criteria.- 5 Complexification.- III Normalization.- 1 Integral Closures.- 2 Normalization.- 3 Multiplicity in Dimension 1.- 4 Newton-Puiseux’s Theorem.- IV Nullstellensatze.- 1 Zero Sets and Zero Ideals.- 2 Rückert’s Complex Nullstellensatz.- 3 The Homomorphism Theorem.- 4 Risler’s Real Nullstellensatz.- 5 Hilbert’s 17th Problem.- V Approximation Theory.- 1 Tougeron’s Implicit Functions Theorem.- 2 Equivalence of Power Series.- 3 M. Artin’s Approximation Theorem.- 4 Formal Completion of Analytic Rings.- 5 Nash Rings.- VI Local Algebraic Rings.- 1 Local Algebraic Rings.- 2 Chevalley’s Theorem.- 3 Zariski’s Main Theorem.- 4 Normalization and Completion.- 5 Efroymson’s Theorem.- Bibliographical Note.

Notă biografică

Dr. Jésus M. Ruiz ist Professor für Mathematik am Institut für Geometrie und Topologie an der Universität Complutense de Madrid.