Cantitate/Preț
Produs

Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity: Lecture Notes in Applied Mathematics and Mechanics, cartea 2

Autor Paul Steinmann
en Limba Engleză Paperback – 7 apr 2015
This book illustrates the deep roots of the geometrically nonlinear kinematics of
generalized continuum mechanics in differential geometry. Besides applications to first-
order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating
for generalized models of continuum mechanics such as second-order (gradient-type)
elasticity and elasto-plasticity.
 
After a motivation that arises from considering geometrically linear first- and second-
order crystal plasticity in Part I several concepts from differential geometry, relevant
for what follows, such as connection, parallel transport, torsion, curvature, and metric
for holonomic and anholonomic coordinate transformations are reiterated in Part II.
Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics
are considered. There various concepts of differential geometry, in particular aspects
related to compatibility, are generically applied to the kinematics of first- and second-
order geometrically nonlinear continuum mechanics. Together with the discussion on
the integrability conditions for the distortions and double-distortions, the concepts
of dislocation, disclination and point-defect density tensors are introduced. For
concreteness, after touching on nonlinear fir
st- and second-order elasticity, a detaileddiscussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity
is given. The discussion naturally culminates in a comprehensive set of different types
of dislocation, disclination and point-defect density tensors. It is argued, that these
can potentially be used to model densities of geometrically necessary defects and the
accompanying hardening in crystalline materials. Eventually Part IV summarizes the
above findings on integrability whereby distinction is made between the straightforward
conditions for the distortion and the double-distortion being integrable and the more
involved conditions for the strain (metric) and the double-strain (connection) being
integrable.
 
The book addresses readers with an interest in continuum modelling of solids from
engineering and the sciences alike, whereby a sound knowledge of tensor calculus and
continuum mechanics is required as a prerequisite.
 
 
Citește tot Restrânge

Preț: 110067 lei

Preț vechi: 134228 lei
-18% Nou

Puncte Express: 1651

Preț estimativ în valută:
21065 21999$ 17465£

Carte tipărită la comandă

Livrare economică 12-26 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662464595
ISBN-10: 3662464594
Pagini: 540
Ilustrații: XXIV, 517 p. 59 illus.
Dimensiuni: 155 x 235 x 33 mm
Greutate: 0.75 kg
Ediția:2015
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Applied Mathematics and Mechanics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Part I Prologue.- Part II Differential Geometry.- Part III Nonlinear Continuum Mechanics.- Part IV Epilogue.

Recenzii

“This new, comprehensive book by P. Steinmann consists of three main parts. … This book is of very high rigor, scope, and quality, written by an expert in the field, and is thus strongly recommended as a reference for scholars and advanced graduate students. It could also possibly serve as a textbook or supplementary reference for graduate or professional level course(s).” (John D. Clayton, Mathematical Reviews, August, 2015)

Textul de pe ultima copertă

This book illustrates the deep roots of the geometrically nonlinear kinematics of
generalized continuum mechanics in differential geometry. Besides applications to first-
order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating
for generalized models of continuum mechanics such as second-order (gradient-type)
elasticity and elasto-plasticity.
 
After a motivation that arises from considering geometrically linear first- and second-
order crystal plasticity in Part I several concepts from differential geometry, relevant
for what follows, such as connection, parallel transport, torsion, curvature, and metric
for holonomic and anholonomic coordinate transformations are reiterated in Part II.
Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics
are considered. There various concepts of differential geometry, in particular aspects
related to compatibility, are generically applied to the kinematics of first- and second-
order geometrically nonlinear continuum mechanics. Together with the discussion on
the integrability conditions for the distortions and double-distortions, the concepts
of dislocation, disclination and point-defect density tensors are introduced. For
concreteness, after touching on nonlinear fir
st- and second-order elasticity, a detaileddiscussion of the kinematics of (multiplicative) first- and second-order elasto-plasticity
is given. The discussion naturally culminates in a comprehensive set of different types
of dislocation, disclination and point-defect density tensors. It is argued, that these
can potentially be used to model densities of geometrically necessary defects and the
accompanying hardening in crystalline materials. Eventually Part IV summarizes the
above findings on integrability whereby distinction is made between the straightforward
conditions for the distortion and the double-distortion being integrable and the more
involved conditions for the strain (metric) and the double-strain (connection) being
integrable.
 
The book addresses readers with an interest in continuum modelling of solids from
engineering and the sciences alike, whereby a sound knowledge of tensor calculus and
continuum mechanics is required as a prerequisite.
 
 

Caracteristici

Comprehensive presentation of the main concepts of differential geometry Presents applications of differential geometry concepts to nonlinear continuum mechanics Written by a leading expert in the field