Cantitate/Preț
Produs

Geometrische Methoden in der Theorie der gewöhnlichen Differentialgleichungen

Autor Arnold
de Limba Germană Paperback – 28 dec 2011

Preț: 48208 lei

Nou

Puncte Express: 723

Preț estimativ în valută:
9226 9583$ 7664£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034871266
ISBN-10: 3034871260
Pagini: 324
Ilustrații: 320 S.
Dimensiuni: 170 x 244 x 20 mm
Greutate: 0.52 kg
Ediția:Softcover reprint of the original 1st ed. 1987
Editura: Birkhäuser Basel
Colecția Birkhäuser
Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1. Spezielle Gleichungen.- 1.1. Differentialgleichungen, die bezüglich Symmetriegruppen invariant bleiben.- 1.2. Die Auflösung der Singularitäten von Differentialgleichungen.- 1.3. Implizite Differentialgleichungen.- 1.4. Die Normalform einer impliziten Differentialgleichung in der Umgebung eines regulären singulären Punktes.- 1.5. Die zeitfreie Schrödinger-Gleichung.- 1.6. Die Geometrie einer Differentialgleichung zweiter Ordnung und die Geometrie eines Paares von Richtungsfeldern im dreidimensionalen Raum.- 2. Partielle Differentialgleichungen erster Ordnung.- 2.1. Lineare und quasilineare partielle Differentialgleichungen erster Ordnung.- 2.2. Nichtlineare partielle Gleichungen erster Ordnung.- 2.3. Der Satz von Frobenius.- 3. Strukturstabilität.- 3.1. Der Begriff der Strukturstabilität.- 3.2. Differentialgleichungen auf dem Torus.- 3.3. Die analytische Reduktion analytischer Diffeomorphismen der Kreislinie auf Drehungen.- 3.4. Einführung in die hyperbolische Theorie.- 3.5. Anosov-Systeme.- 3.6. Strukturstabile Systeme sind nicht überall dicht.- 4. Störungstheorie.- 4.1. Die Mittelungsmethode.- 4.2. Mittelbildung in monofrequenten Systemen.- 4.3. Mittelbildung in multifrequenten Systemen.- 4.4. Die Mittelbildung in Hamiltonschen Systemen.- 4.5. Adiabatische Invarianten.- 4.6. Mittelbildung in Seifert-Blätterungen.- 5. Normalformen.- 5.1. Formale Reduktion auf eine lineare Normalform.- 5.2. Der Resonanzfall.- 5.3. Poincarésche und Siegelsehe Gebiete..- 5.4. Die Normalform einer Abbildung in einer Umgebung eines Fixpunktes.- 5.5. Die Normalform einer Gleichung mit periodischen Koeffizienten.- 5.6. Die Normalform einer Umgebung einer elliptischen Kurve.- 5.7. Beweis des Satzes von Siegel.- 6. Lokale Bifurkationstheorie.- 6.1. Familien und Deformationen.-6.2. Von Parametern abhängende Matrizen und Singularitäten der Dekrementdia¬gramme.- 6.3. Die Bifurkationen der singulären Punkte eines Vektorfeldes.- 6.4. Verselle Deformationen der Phasenbilder.- 6.5. Der Stabilitätsverlust von Gleichgewichtslagen.- 6.6. Der Stabilitätsverlust von Selbstschwingungen.- 6.7. Verselle Deformationen äquivarianter Vektorfelder auf der Ebene.- 6.8. Die Änderung der Topologie bei Resonanzen.- 6.9. Die Klassifizierung der singulären Punkte.- Beispiele für Prüfungsaufgaben.- Literatur.- Namen- und Sachverzeichnis.