Cantitate/Preț
Produs

Sub-Riemannian Geometry: Progress in Mathematics, cartea 144

Editat de Andre Bellaiche, Jean-Jaques Risler
en Limba Engleză Hardback – 26 sep 1996

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64579 lei  6-8 săpt.
  Birkhäuser Basel – 18 oct 2011 64579 lei  6-8 săpt.
Hardback (1) 65249 lei  6-8 săpt.
  Birkhäuser Basel – 26 sep 1996 65249 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 65249 lei

Preț vechi: 76763 lei
-15% Nou

Puncte Express: 979

Preț estimativ în valută:
12489 12989$ 10465£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764354763
ISBN-10: 3764354763
Pagini: 412
Ilustrații: VIII, 398 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.75 kg
Ediția:1996
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

The tangent space in sub-Riemannian geometry.- § 1. Sub-Riemannian manifolds.- § 2. Accessibility.- § 3. Two examples.- § 4. Privileged coordinates.- § 5. The tangent nilpotent Lie algebra and the algebraic structure of the tangent space.- § 6. Gromov’s notion of tangent space.- § 7. Distance estimates and the metric tangent space.- § 8. Why is the tangent space a group?.- References.- Carnot-Carathéodory spaces seen from within.- § 0. Basic definitions, examples and problems.- § 1. Horizontal curves and small C-C balls.- § 2. Hypersurfaces in C-C spaces.- § 3. Carnot-Carathéodory geometry of contact manifolds.- § 4. Pfaffian geometry in the internal light.- § 5. Anisotropic connections.- References.- Survey of singular geodesics.- § 1. Introduction.- § 2. The example and its properties.- § 3. Some open questions.- § 4. Note in proof.- References.- A cornucopia of four-dimensional abnormal sub-Riemannian minimizers.- § 1. Introduction.- § 2. Sub-Riemannian manifolds and abnormal extremals.- § 3. Abnormal extremals in dimension 4.- § 4. Optimality.- § 5. An optimality lemma.- § 6. End of the proof.- § 7. Strict abnormality.- § 8. Conclusion.- References.- Stabilization of controllable systems.- § 0. Introduction.- § 1. Local controllability.- § 2. Sufficient conditions for local stabilizability of locally controllable systems by means of stationary feedback laws.- § 3. Necessary conditions for local stabilizability by means of stationary feedback laws.- § 4. Stabilization by means of time-varying feedback laws.- § 5. Return method and controllability.- References.