Cantitate/Preț
Produs

Generalized Vertex Algebras and Relative Vertex Operators: Progress in Mathematics, cartea 112

Autor Chongying Dong, James Lepowsky
en Limba Engleză Hardback – noi 1993
In the past few years, vertex operator algebra theory has been growing both in intrinsic interest and in the scope of its interconnections with areas of mathematics and physics. The structure and representation theory of vertex operator algebras is deeply related to such subjects as monstrous moonshine, conformal field theory and braid group theory. Vertex operator algebras are the mathematical counterpart of chiral algebras in conformal field theory. In the Introduction which follows, we sketch some of the main themes in the historical development and mathematical and physical motivations of these ideas, and some of the current issues. Given a vertex operator algebra, it is important to consider not only its modules (representations) but also intertwining operators among the mod­ ules. Matrix coefficients of compositions of these operators, corresponding to certain kinds of correlation functions in conformal field theory, lead natu­ rally to braid group representations. In the specialbut important case when these braid group representations are one-dimensional, one can combine the modules and intertwining operators with the algebra to form a structure satisfying axioms fairly close to those for a vertex operator algebra. These are the structures which form the main theme of this monograph. Another treatment of similar structures has been given by Feingold, Frenkel and Ries (see the reference [FFR] in the Bibliography), and in fact the material de­ veloped in the present work has close connections with much work of other people, as we explain in the Introduction and throughout the text.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63663 lei  6-8 săpt.
  Birkhäuser Boston – 6 oct 2012 63663 lei  6-8 săpt.
Hardback (1) 64283 lei  6-8 săpt.
  Birkhäuser Boston – noi 1993 64283 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 64283 lei

Preț vechi: 75627 lei
-15% Nou

Puncte Express: 964

Preț estimativ în valută:
12302 12765$ 10282£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817637217
ISBN-10: 0817637214
Pagini: 206
Ilustrații: IX, 206 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.49 kg
Ediția:1993
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

1 Introduction.- 2 The setting.- 3 Relative untwisted vertex operators.- 4 Quotient vertex operators.- 5 A Jacobi identity for relative untwisted vertex operators.- 6 Generalized vertex operator algebras and their modules.- 7 Duality for generalized vertex operator algebras.- 8 Monodromy representations of braid groups.- 9 Generalized vertex algebras and duality.- 10 Tensor products.- 11 Intertwining operators.- 12 Abelian intertwining algebras, third cohomology and duality.- 13 Affine Lie algebras and vertex operator algebras.- 14 Z-algebras and parafermion algebras.- List of frequently-used symbols, in order of appearance.

Recenzii

"The presentation is smooth, self-contained and accessible with detailed proofs. The introduction offers background and history about the generalized theory. It also uses examples to show some of the central techniques in VOA, thus offering pedagogical help to the readers. I think this book will benefit researchers in the field."
—Mathematical Reviews

Textul de pe ultima copertă

The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. They are mathematically precise counterparts of what are known in physics as chiral algebras, and in particular, they are intimately related to string theory and conformal field theory.
Dong and Lepowsky have generalized the theory of vertex operator algebras in a systematic way at three successively more general levels, all of which incorporate one-dimensional braid groups representations intrinsically into the algebraic structure: First, the notion of "generalized vertex operator algebra" incorporates such structures as Z-algebras, parafermion algebras, and vertex operator superalgebras. Next, what they term "generalized vertex algebras" further encompass the algebras of vertex operators associated with rational lattices. Finally, the most generalof the three notions, that of "abelian intertwining algebra," also illuminates the theory of intertwining operator for certain classes of vertex operator algebras.
The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.