Representation Theory and Automorphic Forms: Progress in Mathematics, cartea 255
Editat de Toshiyuki Kobayashi, Wilfried Schmid, Jae-Hyun Yangen Limba Engleză Hardback – 31 oct 2007
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- 20% Preț: 584.61 lei
- Preț: 308.13 lei
- 18% Preț: 720.91 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 558.89 lei
- Preț: 380.25 lei
- Preț: 377.63 lei
- Preț: 362.65 lei
- Preț: 375.60 lei
- 18% Preț: 701.93 lei
- 15% Preț: 627.83 lei
- 15% Preț: 624.67 lei
- 18% Preț: 863.94 lei
- Preț: 370.62 lei
- Preț: 376.33 lei
- Preț: 364.33 lei
- 15% Preț: 511.52 lei
- 15% Preț: 618.53 lei
- 15% Preț: 626.09 lei
- Preț: 366.90 lei
- Preț: 377.63 lei
- Preț: 383.55 lei
- 15% Preț: 672.84 lei
- Preț: 416.92 lei
- Preț: 371.35 lei
- 18% Preț: 868.44 lei
- 18% Preț: 771.92 lei
- 15% Preț: 615.86 lei
- 18% Preț: 1086.99 lei
- 15% Preț: 475.39 lei
Preț: 752.35 lei
Preț vechi: 917.49 lei
-18% Nou
Puncte Express: 1129
Preț estimativ în valută:
143.99€ • 151.90$ • 119.99£
143.99€ • 151.90$ • 119.99£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817645052
ISBN-10: 0817645055
Pagini: 210
Ilustrații: VIII, 214 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:2008
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 0817645055
Pagini: 210
Ilustrații: VIII, 214 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.44 kg
Ediția:2008
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Irreducibility and Cuspidality.- On Liftings of Holomorphic Modular Forms.- Multiplicity-free Theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs.- The Rankin–Selberg Method for Automorphic Distributions.- Langlands Functoriality Conjecture and Number Theory.- Discriminant of Certain K3 Surfaces.
Textul de pe ultima copertă
This volume addresses the interplay between representation theory and automorphic forms. The invited papers, written by leading mathematicians, track recent progress in the ever expanding fields of representation theory and automorphic forms, and their association with number theory and differential geometry.
Representation theory relates to number theory through the Langlands program, which conjecturally connects algebraic extensions of number fields to automorphic representations and L-functions. These are the subject of several of the papers. Multiplicity-free representations constitute another subject, which is approached geometrically via the notion of visible group actions on complex manifolds.
Both graduate students and researchers will find inspiration in this volume.
Contributors: T. Ikeda, T. Kobayashi, S. Miller, D. Ramakrishnan, W. Schmid, F. Shahidi, K. Yoshikawa
Representation theory relates to number theory through the Langlands program, which conjecturally connects algebraic extensions of number fields to automorphic representations and L-functions. These are the subject of several of the papers. Multiplicity-free representations constitute another subject, which is approached geometrically via the notion of visible group actions on complex manifolds.
Both graduate students and researchers will find inspiration in this volume.
Contributors: T. Ikeda, T. Kobayashi, S. Miller, D. Ramakrishnan, W. Schmid, F. Shahidi, K. Yoshikawa
Caracteristici
Interdisciplinary approach to the ever expanding fields of representation theory and automorphic forms Written by leading mathematicians Tracks recent progress in representation theory and automorphic forms, and their association with number theory and differential geometry Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture