Cantitate/Preț
Produs

An Introduction to Homological Algebra: Universitext

Autor Joseph J. Rotman
en Limba Engleză Paperback – 14 oct 2008
Homological Algebra has grown in the nearly three decades since the rst e- tion of this book appeared in 1979. Two books discussing more recent results are Weibel, An Introduction to Homological Algebra, 1994, and Gelfand– Manin, Methods of Homological Algebra, 2003. In their Foreword, Gelfand and Manin divide the history of Homological Algebra into three periods: the rst period ended in the early 1960s, culminating in applications of Ho- logical Algebra to regular local rings. The second period, greatly in uenced by the work of A. Grothendieck and J. -P. Serre, continued through the 1980s; it involves abelian categories and sheaf cohomology. The third period, - volving derived categories and triangulated categories, is still ongoing. Both of these newer books discuss all three periods (see also Kashiwara–Schapira, Categories and Sheaves). The original version of this book discussed the rst period only; this new edition remains at the same introductory level, but it now introduces thesecond period as well. This change makes sense pe- gogically, for there has been a change in the mathematics population since 1979; today, virtually all mathematics graduate students have learned so- thing about functors and categories, and so I can now take the categorical viewpoint more seriously. When I was a graduate student, Homological Algebra was an unpopular subject. The general attitude was that it was a grotesque formalism, boring to learn, and not very useful once one had learned it.
Citește tot Restrânge

Din seria Universitext

Preț: 36906 lei

Preț vechi: 44465 lei
-17% Nou

Puncte Express: 554

Preț estimativ în valută:
7065 7355$ 5816£

Carte disponibilă

Livrare economică 10-24 ianuarie 25
Livrare express 27 decembrie 24 - 02 ianuarie 25 pentru 5404 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387245270
ISBN-10: 0387245278
Pagini: 709
Ilustrații: XIV, 710 p. 11 illus.
Dimensiuni: 155 x 235 x 40 mm
Greutate: 1.09 kg
Ediția:2nd ed. 2009
Editura: Springer
Colecția Springer
Seria Universitext

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Hom and Tensor.- Special Modules.- Specific Rings.- Setting the Stage.- Homology.- Tor and Ext.- Homology and Rings.- Homology and Groups.- Spectral Sequences.

Recenzii

From the reviews of the second edition:
"Joseph J. Rotman is a renowned textbook author in contemporary mathematics. Over the past four decades, he has published numerous successful texts of introductory character, mainly in the field of modern abstract algebra and its related disciplines. … Now, in the current second edition, the author has reworked the original text considerably.  While the first edition covered exclusively aspects of the homological algebra of groups, rings, and modules, that is, topics from its first period of development, the new edition includes some additional material from the second period, together with numerous other, more recent results from the homological algebra of groups, rings, and modules. The new edition has almost doubled in size and represents a substantial updating of the classic original. … All together, a popular classic has been turned into a new, much more topical and comprehensive textbook on homological algebra, with all the great features that once distinguished the original, very much to the belief [of its] new generation of readers." (Werner Kleinert, Zentralblatt)
"The new expanded second edition … attempts to cover more ground, basically going from the (concrete) category of modules over a given ring, as in the first edition, to an abelian category and to treat the important example of the category of sheaves on a topological space. … the exercise at the end of every section, plenty of examples and motivation for the many new concepts set this book apart and make it an ideal textbook for a course on the subject." (Felipe Zaldivar, MAA Online, December, 2008)
"This is the second edition of Rotman’s introduction to the more classical aspects of homological algebra … . The book is mainly concerned with homological algebra in module categories … . The book is full of illustrative examples and exercises. It contains many references for further study and also to original sources. All this makes Rotman’s book very convenient for beginners in homological algebra as well as a reference book." (Fernando Muro, Mathematical Reviews, Issue 2009 i)

Textul de pe ultima copertă

With a wealth of examples as well as abundant applications to Algebra, this is a must-read work: a clearly written, easy-to-follow guide to Homological Algebra.  The author provides a treatment of Homological Algebra which approaches the subject in terms of its origins in algebraic topology.  In this brand new edition the text has been fully updated and revised throughout and new material on sheaves and abelian categories has been added.
 
Applications include the following:
 
* to rings -- Lazard's theorem that flat modules are direct limits of free modules, Hilbert's Syzygy Theorem, Quillen-Suslin's solution of Serre's problem about projectives over polynomial rings, Serre-Auslander-Buchsbaum characterization of regular local rings (and a sketch of unique factorization);
 
* to groups -- Schur-Zassenhaus, Gaschutz's theorem on outer automorphisms of finite p-groups, Schur multiplier, cotorsion groups;
 
* to sheaves -- sheaf cohomology, Cech cohomology, discussion of Riemann-Roch Theorem over compact Riemann surfaces.
 
Learning Homological Algebra is a two-stage affair. Firstly, one must learn the language of Ext and Tor, and what this describes. Secondly, one must be able to compute these things using a separate language: that of spectral sequences. The basic properties of spectral sequences are developed using exact couples. All is done in the context of bicomplexes, for almost all applications of spectral sequences involve indices.  Applications include Grothendieck spectral sequences, change of rings, Lyndon-Hochschild-Serre sequence, and theorems of Leray and Cartan computing sheaf cohomology.
 
Joseph Rotman is Professor Emeritus of Mathematics at the University of Illinois at Urbana-Champaign. He is the author of numerous successful textbooks, including Advanced Modern Algebra (Prentice-Hall 2002), Galois Theory, 2nd Edition (Springer 1998) A First Course in Abstract Algebra (Prentice-Hall 1996), Introduction to the Theory of Groups, 4th Edition (Springer 1995), and Introduction to Algebraic Topology (Springer 1988).

Caracteristici

Author supplies many examples Traces development of terminology Provides abundant applications to commutative algebra Includes supplementary material: sn.pub/extras