Geometric and Analytic Number Theory: Universitext
Autor Edmund Hlawka Traducere de Charles Thomas Autor Johannes Schoißengeier, Rudolf Taschneren Limba Engleză Paperback – 2 aug 1991
Din seria Universitext
- 13% Preț: 353.48 lei
- Preț: 418.67 lei
- Preț: 465.61 lei
- Preț: 371.98 lei
- 17% Preț: 394.41 lei
- Preț: 356.77 lei
- 17% Preț: 364.56 lei
- 15% Preț: 543.75 lei
- 15% Preț: 497.21 lei
- Preț: 634.38 lei
- Preț: 396.53 lei
- 17% Preț: 431.50 lei
- 13% Preț: 355.51 lei
- Preț: 360.07 lei
- 17% Preț: 365.34 lei
- Preț: 358.44 lei
- 15% Preț: 553.33 lei
- 17% Preț: 364.81 lei
- Preț: 673.45 lei
- 15% Preț: 509.58 lei
- 17% Preț: 427.32 lei
- 17% Preț: 426.76 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- 19% Preț: 429.21 lei
- 17% Preț: 369.06 lei
- 15% Preț: 737.46 lei
- 13% Preț: 389.95 lei
- Preț: 487.96 lei
- Preț: 372.86 lei
- Preț: 319.07 lei
- Preț: 379.86 lei
- Preț: 445.88 lei
- Preț: 382.36 lei
- 15% Preț: 533.72 lei
- 15% Preț: 496.02 lei
- 15% Preț: 474.82 lei
- Preț: 389.70 lei
- Preț: 484.08 lei
- 15% Preț: 469.48 lei
- 15% Preț: 643.48 lei
- Preț: 415.02 lei
- 15% Preț: 602.25 lei
- 20% Preț: 510.24 lei
- 15% Preț: 588.37 lei
- Preț: 381.59 lei
- Preț: 489.87 lei
- Preț: 493.89 lei
Preț: 628.22 lei
Preț vechi: 785.26 lei
-20% Nou
Puncte Express: 942
Preț estimativ în valută:
120.22€ • 124.75$ • 100.49£
120.22€ • 124.75$ • 100.49£
Carte disponibilă
Livrare economică 22 februarie-08 martie
Livrare express 11-15 februarie pentru 28.52 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540520160
ISBN-10: 3540520163
Pagini: 252
Ilustrații: X, 238 p.
Dimensiuni: 170 x 242 x 13 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540520163
Pagini: 252
Ilustrații: X, 238 p.
Dimensiuni: 170 x 242 x 13 mm
Greutate: 0.41 kg
Ediția:Softcover reprint of the original 1st ed. 1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
1. The Dirichlet Approximation Theorem.- Dirichlet approximation theorem — Elementary number theory — Pell equation — Cantor series — Irrationality of ?(2) and ?(3) — multidimensional diophantine approximation — Siegel’s lemma — Exercises on Chapter 1..- 2. The Kronecker Approximation Theorem.- Reduction modulo 1 — Comments on Kronecker’s theorem — Linearly independent numbers — Estermann’s proof — Uniform Distribution modulo 1 — Weyl’s criterion — Fundamental equation of van der Corput — Main theorem of uniform distribution theory — Exercises on Chapter 2..- 3. Geometry of Numbers.- Lattices — Lattice constants — Figure lattices — Fundamental region — Minkowski’s lattice point theorem — Minkowski’s linear form theorem — Product theorem for homogeneous linear forms — Applications to diophantine approximation — Lagrange’s theorem — the lattice?(i) — Sums of two squares — Blichfeldt’s theorem — Minkowski’s and Hlawka’s theorem — Rogers’ proof — Exercises on Chapter 3..- 4. Number Theoretic Functions.- Landau symbols — Estimates of number theoretic functions — Abel transformation — Euler’s sum formula — Dirichlet divisor problem — Gauss circle problem — Square-free and k-free numbers — Vinogradov’s lemma — Formal Dirichlet series — Mangoldt’s function — Convergence of Dirichlet series — Convergence abscissa — Analytic continuation of the zeta- function — Landau’s theorem — Exercises on Chapter 4..- 5. The Prime Number Theorem.- Elementary estimates — Chebyshev’s theorem — Mertens’ theorem — Euler’s proof of the infinity of prime numbers — Tauberian theorem of Ingham and Newman — Simplified version of the Wiener-Ikehara theorem —Mertens’ trick — Prime number theorem — The ?-function for number theory in ?(i) — Hecke’s prime number theorem for ?(i) — Exercises on Chapter 5..- 6. Characters of Groups of Residues.- Structure of finite abelian groups — The character group — Dirichlet characters — Dirichlet L-series — Prime number theorem for arithmetic progressions — Gauss sums — Primitive characters — Theorem of Pólya and Vinogradov — Number of power residues — Estimate of the smallest primitive root — Quadratic reciprocity theorem — Quadratic Gauss sums — Sign of a Gauss sum — Exercises on Chapter 6..- 7. The Algorithm of Lenstra, Lenstra and Lovász.- Addenda.- Solutions for the Exercises.- Index of Names.- Index of Terms.