Cohomology of Sheaves: Universitext
Autor Birger Iversenen Limba Engleză Paperback – apr 1986
Din seria Universitext
- 13% Preț: 353.48 lei
- Preț: 418.67 lei
- Preț: 465.61 lei
- Preț: 358.44 lei
- 17% Preț: 394.41 lei
- 15% Preț: 737.46 lei
- 17% Preț: 364.56 lei
- 15% Preț: 543.75 lei
- 15% Preț: 497.21 lei
- Preț: 634.38 lei
- Preț: 360.93 lei
- 17% Preț: 431.50 lei
- 13% Preț: 355.51 lei
- 17% Preț: 364.81 lei
- Preț: 396.53 lei
- 17% Preț: 365.34 lei
- 15% Preț: 553.33 lei
- Preț: 371.98 lei
- Preț: 673.45 lei
- 15% Preț: 509.58 lei
- 17% Preț: 427.32 lei
- 17% Preț: 426.76 lei
- 17% Preț: 427.68 lei
- Preț: 356.77 lei
- 17% Preț: 369.06 lei
- 19% Preț: 429.21 lei
- Preț: 487.96 lei
- 20% Preț: 628.22 lei
- Preț: 372.86 lei
- Preț: 319.07 lei
- Preț: 379.86 lei
- Preț: 445.88 lei
- Preț: 382.36 lei
- 15% Preț: 533.72 lei
- 15% Preț: 496.02 lei
- 15% Preț: 474.82 lei
- Preț: 389.70 lei
- Preț: 484.08 lei
- 15% Preț: 469.48 lei
- 15% Preț: 643.48 lei
- Preț: 415.02 lei
- 15% Preț: 602.25 lei
- 20% Preț: 510.24 lei
- 15% Preț: 588.37 lei
- Preț: 381.59 lei
- Preț: 489.87 lei
- Preț: 493.89 lei
- 20% Preț: 332.24 lei
Preț: 569.54 lei
Preț vechi: 711.93 lei
-20% Nou
Puncte Express: 854
Preț estimativ în valută:
109.01€ • 112.34$ • 92.03£
109.01€ • 112.34$ • 92.03£
Carte disponibilă
Livrare economică 10-24 februarie
Livrare express 25-31 ianuarie pentru 40.81 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540163893
ISBN-10: 3540163891
Pagini: 480
Ilustrații: XII, 464 p.
Dimensiuni: 170 x 244 x 25 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540163891
Pagini: 480
Ilustrații: XII, 464 p.
Dimensiuni: 170 x 244 x 25 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
I. Homological Algebra.- 1. Exact categories.- 2. Homology of complexes.- 3. Additive categories.- 4. Homotopy theory of complexes.- 5. Abelian categories.- 6. Injective resolutions.- 7. Right derived functors.- 8. Composition products.- 9. Resume of the projective case.- 10. Complexes of free abelian groups.- 11. Sign rules.- II. Sheaf Theory.- 0. Direct limits of abelian groups.- 1. Presheaves and sheaves.- 2. Localization.- 3. Cohomology of sheaves.- 4. Direct and inverse image of sheaves. f*,f*.- 5. Continuous maps and cohomology!,.- 6. Locally closed subspaces, h!h.- 7. Cup products.- 8. Tensor product of sheaves.- 9. Local cohomology.- 10. Cross products.- 11. Flat sheaves.- 12. Hom(E,F).- III. Cohomology with Compact Support.- 1. Locally compact spaces.- 2. Soft sheaves.- 3. Soft sheaves on $$\mathbb {R}$$n.- 4. The exponential sequence.- 5. Cohomology of direct limits.- 6. Proper base change and proper homotopy.- 7. Locally closed subspaces.- 8. Cohomology of the n-sphere.- 9. Dimension of locally compact spaces.- 10. Wilder’s finiteness theorem.- IV. Cohomology and Analysis.- 1. Homotopy invariance of sheaf cohomology.- 2. Locally compact spaces, countable at infinity.- 3. Complex logarithms.- 4. Complex curve integrals. The monodromy theorem.- 5. The inhomogenous Cauchy-Riemann equations.- 6. Existence theorems for analytic functions.- 7. De Rham theorem.- 8. Relative cohomology.- 9. Classification of locally constant sheaves.- V. Duality with Coefficient in a Field.- 1. Sheaves of linear forms.- 2. Verdier duality.- 3. Orientation of topological manifolds.- 4. Submanifolds of $$\mathbb {R}$$n of codimension 1.- 5. Duality for a subspace.- 6. Alexander duality.- 7. Residue theorem for n-1 forms on $$\mathbb {R}$$n.- VI. Poincare Duality with GeneralCoefficients.- 1. Verdier duality.- 2. The dualizing complex D.- 3. Lefschetz duality.- 4. Algebraic duality.- 5. Universal coefficients.- 6. Alexander duality.- VII. Direct Image with Proper Support.- 1. The functor f!.- 2. The Künneth formula.- 3. Global form of Verdier duality.- 4. Covering spaces.- 5. Local form of Verdier duality.- VIII. Characteristic Classes.- 1. Local duality.- 2. Thom class.- 3. Oriented microbundles.- 4. Cohomology of real projective space.- 5. Stiefel-Whitney classes.- 6. Chern classes.- 7. Pontrjagin classes.- IX. Borel Moore Homology.- 1. Proper homotopy invariance.- 2. Restriction maps.- 3. Cap products.- 4. Poincare duality.- 5. Cross products and the Künneth formula.- 6. Diagonal class of an oriented manifold.- 7. Gysin maps.- 8. Lefschetz fixed point formula.- 9. Wu’s formula.- 10. Preservation of numbers.- 11. Trace maps in homology.- X. Application to Algebraic Geometry.- 1. Dimension of algebraic varieties.- 2. The cohomology class of a subvariety.- 3. Homology class of a subvariety.- 4. Intersection theory.- 5. Algebraic families of cycles.- 6. Algebraic cycles and Chern classes.- XI. Derived Categories.- 1. Categories of fractions.- 2. The derived category D (A).- 3. Triangles associated to an exact sequence.- 4. Yoneda extensions.- 5. Octahedra.- 6. Localization.