Geometry of Derivation with Applications
Autor Norman L. Johnsonen Limba Engleză Hardback – 6 iun 2023
The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.
Preț: 699.43 lei
Preț vechi: 822.85 lei
-15% Nou
Puncte Express: 1049
Preț estimativ în valută:
133.90€ • 137.71$ • 111.08£
133.90€ • 137.71$ • 111.08£
Carte tipărită la comandă
Livrare economică 17 februarie-03 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032349169
ISBN-10: 1032349166
Pagini: 372
Dimensiuni: 178 x 254 x 22 mm
Greutate: 0.82 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
ISBN-10: 1032349166
Pagini: 372
Dimensiuni: 178 x 254 x 22 mm
Greutate: 0.82 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Public țintă
Postgraduate and ProfessionalNotă biografică
Norman L. Johnson is an Emeritus Professor (2011) at the University of Iowa where he has had ten PhD students. He received his BA from Portland State University, MA from Washington State University and PhD also at Washington State University as a student of T.G. Ostrom. He has written 580 research items including articles, books, and chapters available on Researchgate.net. Additionally, he has worked with approximately 40 coauthors and is a previous Editor for International Journal of Pure and Applied Mathematics and Note di Matematica. Dr. Johnson plays ragtime piano and enjoys studying languages and 8-ball pool.
Cuprins
Acknowledgements. Preface. Part 1. Classical theory of derivation. Chapter 1. Coordinate methods. Chapter 2. Embedding theory of derivable nets. Part 2. Classifying derivable nets over skewfields. Chapter 3. Fundamentals & background. Chapter 4. Classification theory over skewfields. Part 3. Types i of derivable nets. Chapter 5. The types. Part 4. Flocks of a-cones. Chapter 6. Klein quadric and generalization. Part 5. Flock geometries. Chapter 7. Related geometries. Part 6. Twisted hyerbolic flocks. Chapter 8. Hyperbolic flocks and generalizations. Part 7. Lifting. Chapter 9. Chains & surjectivity of degree 1/k. Lifting skewfields. Chapter 10. General theory. Part 9. Bilinearity. Chapter 11. General bilinear geometries. Part 10. Multiple replacement theorem. Chapter 12. The general theorem. Part 11. Classification of subplane covered nets. Chapter 13. Suspect subplane covered nets. Part 12. Extensions of skewfields. Chapter 14. Quaternion division ring extensions. Chapter 15. General ideas on Klein extensions. Bibliography. Index.
Descriere
Thisbook will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood.