Cantitate/Preț
Produs

Getting Started with Google BERT

Autor Sudharsan Ravichandiran
en Limba Engleză Paperback – 21 ian 2021
Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer model Become well-versed with BERT along with ALBERT, RoBERTa, and DistilBERT Discover how to pre-train and fine-tune BERT models for several NLP tasks Book Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer's encoder and decoder work. You'll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you'll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you'll be well-versed with using BERT and its variants for performing practical NLP tasks. What You Will LearnUnderstand the transformer model from the ground up Find out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasks Get hands-on with BERT by learning to generate contextual word and sentence embeddings Fine-tune BERT for downstream tasks Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models Get the hang of the BERT models based on knowledge distillation Understand cross-lingual models such as XLM and XLM-R Explore Sentence-BERT, VideoBERT, and BART Who this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.
Citește tot Restrânge

Preț: 24457 lei

Preț vechi: 30571 lei
-20% Nou

Puncte Express: 367

Preț estimativ în valută:
4682 4815$ 3884£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781838821593
ISBN-10: 1838821597
Pagini: 352
Dimensiuni: 191 x 235 x 20 mm
Greutate: 0.6 kg
Editura: Packt Publishing

Notă biografică

Sudharsan Ravichandiran is a data scientist and artificial intelligence enthusiast. He holds a Bachelors in Information Technology from Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning including natural language processing and computer vision. He is an open-source contributor and loves answering questions on Stack Overflow.