Ginzburg-Landau Vortices: Progress in Nonlinear Differential Equations and Their Applications, cartea 13
Autor Fabrice Bethuel, Haim Brezis, Frederic Heleinen Limba Engleză Paperback – 28 mar 1994
Din seria Progress in Nonlinear Differential Equations and Their Applications
- Preț: 281.13 lei
- 15% Preț: 630.33 lei
- 18% Preț: 720.50 lei
- 18% Preț: 875.30 lei
- 18% Preț: 1107.08 lei
- 15% Preț: 574.38 lei
- 18% Preț: 1105.69 lei
- 18% Preț: 884.90 lei
- 18% Preț: 772.58 lei
- 18% Preț: 768.25 lei
- Preț: 391.09 lei
- 15% Preț: 627.75 lei
- 18% Preț: 992.31 lei
- 18% Preț: 989.70 lei
- 18% Preț: 934.64 lei
- Preț: 375.65 lei
- 15% Preț: 574.99 lei
- 5% Preț: 644.07 lei
- Preț: 378.83 lei
- Preț: 394.46 lei
- 15% Preț: 690.11 lei
- 15% Preț: 508.99 lei
- Preț: 378.26 lei
- Preț: 383.16 lei
- Preț: 385.99 lei
- 18% Preț: 935.58 lei
- Preț: 380.17 lei
- 15% Preț: 631.77 lei
- 18% Preț: 872.33 lei
- 15% Preț: 629.19 lei
- Preț: 384.11 lei
- 18% Preț: 946.56 lei
- 18% Preț: 773.37 lei
Preț: 622.64 lei
Preț vechi: 732.51 lei
-15% Nou
Puncte Express: 934
Preț estimativ în valută:
119.20€ • 123.90$ • 98.83£
119.20€ • 123.90$ • 98.83£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817637231
ISBN-10: 0817637230
Pagini: 162
Ilustrații: XXVII, 162 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Boston, MA, United States
ISBN-10: 0817637230
Pagini: 162
Ilustrații: XXVII, 162 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:1994
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
I. Energy estimates for S1-valued maps.- 1. An auxiliary linear problem.- 2. Variants of Theorem I.1.- 3. S1-valued harmonic maps with prescribed isolated singularities. The canonical harmonic map.- 4. Shrinking holes. Renormalized energy.- II. A lower bound for the energy of S1-valued maps on perforated domains.- III. Some basic estimates for u?.- 1. Estimates when G=BR and g(x)=x/|x|.- 2. An upper bound for E? (u?).- 3. An upper bound for $$ \frac{1}{{{\varepsilon^2}}}{\smallint_G}{\left( {{{\left| {{u_{\varepsilon }}} \right|}^2} - 1} \right)^2} $$.- 4. $$ \left| {{u_e}} \right| \geqslant \frac{1}{2} $$ on “good discs”.- IV. Towards locating the singularities: bad discs and good discs.- 1. A covering argument.- 2. Modifying the bad discs.- V. An upper bound for the energy of u? away from the singularities.- 1. A lower bound for the energy of u? near aj.- 2. Proof of Theorem V.l.- VI. u?n converges: u? is born!.- 1. Proof of Theorem VI.1.- 2. Further properties of u? : singularities have degree one and they are not on the boundary.- VII. u? coincides with THE canonical harmonic map having singularities (aj).- VIII. The configuration (aj) minimizes the renormalized energy W.- 1. The general case.- 2. The vanishing gradient property and its various forms.- 3. Construction of critical points of the renormalized energy.- 4. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$.- 5. The case G=B1 and $$ g\left( \theta \right) = {e^{{i\theta }}} $$ with d?.- IX. Some additional properties of u?.- 1. The zeroes of u?.- 2. The limit of $$ \left\{ {{E_{\varepsilon }}\left( {{u_{\varepsilon }}} \right) - \pi d\left| {\log \varepsilon } \right|} \right\} $$ as $$ \varepsilon \to 0 $$.- 3. $$ {\smallint_G}{\left| {\nabla \left| {{u_{\varepsilon }}}\right|} \right|^2} $$ remains bounded as $$ \varepsilon \to 0 $$.- 4. The bad discs revisited.- X. Non minimizing solutions of the Ginzburg-Landau equation.- 1. Preliminary estimates; bad discs and good discs.- 2. Splitting $$ \left| {\nabla {v_{\varepsilon }}} \right| $$.- 3. Study of the associated linear problems.- 4. The basic estimates: $$ {\smallint_G}{\left| {\nabla {v_{\varepsilon }}} \right|^2} \leqslant C\left| {\log \;\varepsilon } \right| $$ and $$ {\smallint_G}{\left| {\nabla {v_{\varepsilon }}} \right|^p} \leqslant {C_p} $$ for p
Recenzii
"The three authors are well-known excellent specialists in nonlinear functional analysis and partial differential equations and the material presented in the book covers some of their recent and original results. The book is written in a very clear and readable style with many examples."
--ZAA
"...the book gives a very stimulating account of an interesting minimization problem. It can be a fruitful source of ideas for those who work through the material carefully."
--ZAMP
--ZAA
"...the book gives a very stimulating account of an interesting minimization problem. It can be a fruitful source of ideas for those who work through the material carefully."
--ZAMP