Topological Nonlinear Analysis: Degree, Singularity, and Variations: Progress in Nonlinear Differential Equations and Their Applications, cartea 15
Editat de Michele Matzeu, Alfonso Vignolien Limba Engleză Paperback – 22 sep 2011
Din seria Progress in Nonlinear Differential Equations and Their Applications
- Preț: 281.13 lei
- 15% Preț: 630.33 lei
- 18% Preț: 720.50 lei
- 18% Preț: 875.30 lei
- 18% Preț: 1107.08 lei
- 15% Preț: 574.38 lei
- 18% Preț: 1105.69 lei
- 18% Preț: 884.90 lei
- 18% Preț: 772.58 lei
- 18% Preț: 768.25 lei
- Preț: 391.09 lei
- 15% Preț: 627.75 lei
- 18% Preț: 992.31 lei
- 18% Preț: 989.70 lei
- 18% Preț: 934.64 lei
- Preț: 375.65 lei
- 15% Preț: 574.99 lei
- 5% Preț: 644.07 lei
- 15% Preț: 622.64 lei
- Preț: 378.83 lei
- 15% Preț: 690.11 lei
- 15% Preț: 508.99 lei
- Preț: 378.26 lei
- Preț: 383.16 lei
- Preț: 385.99 lei
- 18% Preț: 935.58 lei
- Preț: 380.17 lei
- 15% Preț: 631.77 lei
- 18% Preț: 872.33 lei
- 15% Preț: 629.19 lei
- Preț: 384.11 lei
- 18% Preț: 946.56 lei
- 18% Preț: 773.37 lei
Preț: 394.46 lei
Nou
Puncte Express: 592
Preț estimativ în valută:
75.52€ • 78.49$ • 62.61£
75.52€ • 78.49$ • 62.61£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461275848
ISBN-10: 1461275849
Pagini: 548
Ilustrații: 531 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Boston, MA, United States
ISBN-10: 1461275849
Pagini: 548
Ilustrații: 531 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Variational Methods and Nonlinear Problems: Classical Results and Recent Advances.- • Introduction.- • Lusternik-Schnirelman Theory.- • Applications to Nonlinear Eigenvalues.- • Unbounded Functionals.- • Elliptic Dirichlet Problems.- • Singular Potentials.- • References.- to Morse Theory: A New Approach.- • Introduction.- • Contents.- • The Abstract Theory.- • The Morse Index.- • The Poincaré Polynomial.- • The Conley Blocks.- • The Morse Relations.- • Morse Theory for Degenerate Critical Points.- • Some Existence Theorems.- • An Application to Riemannian Geometry.- • Riemannian Manifolds.- • Geodesies.- • The Morse Theory for Geodesics.- • The Index Theorem.- • An Application to Space-Time Geometry.- • Introduction.- • Some Examples of Lorentzian Manifolds.- • Morse Theory for Lorentzian Manifolds.- • Preliminary Lemmas.- • Proof of The Morse Relations For Static Space-Time.- • Some Application to a Semilinear Elliptic Equation.- • Introduction.- • The Sublinear Case.- • The Superlinear Case Morse Relations for Positive Solutions.- • The Functional Setting.- • Some Hard Analysis.- • The Photography Method.- • The Topology of The Strip.- • References.- Applications of Singularity Theory to the Solutions of Nonlinear Equations.- • The Full Lyapunov-Schmidt Reduction.- • Mather’s Theory of C?-Stability of Mappings - Global Theory.- • Mather’s Local Theory as Paradigm.- • Singularity Theory with Special Conditions.- • The Structure of Nonlinear Fredholm Operators.- • Multiplicities of Solutions to Nonlinear Equations.- • The Theory for Topological Equivalence.- • Bibliography.- Fixed Point Index Calculations and Applications.- • The Fixed Point Index.- • Some Remarks onConvex Sets.- • A Basic Index Calculation.- • Index Calculations in Product Cones.- • Applications of Index Formulae - I.- • Applications of Index Formulae - II.- • Some Global Branches.- • Monotone Dynamical Systems.- • Preliminaries.- • Connecting Orbits and Related Results.- • Generic Convergence.- • References.- Topological Bifurcation.- • Abstract.- • Introduction.- • Preliminaries.- • One Parameter Bifurcation.- • Local Bifurcation.- • Global Bifurcation.- • Special Nonlinearities.- • Multiparameter Bifurcation.- • Sufficient Conditions for Local Bifurcation.- • Necessary Conditions for Linearized Local Bifurcation.- • Multiparameter Global Bifurcation.- • A Summation Formula and A Generalized Degree.- • Structure and Dimension of Global Branches.- • O-EPI Maps.- • Dimension.- • Application to Bifurcation Problems.- • Equivariant Bifurcation.- • Preliminaries.- • Consequences of the Symmetry.- • ?-EPI Maps.- • ?-Degree.- • The Equivariant J-Homomorphism and Sufficient Conditions.- • Necessary and Sufficient Conditions for Equivariant Bifurcation.- • Bibliography.- Critical Point Theory.- • Introduction.- • The Mountain Pass Theorem.- • The Saddle Point Theorem.- • Linking and A General Critical Point Theorem.- • Periodic Solutions of Hamiltonian Systems.- • Introduction.- • The Technical Framework.- • Periodic Solutions of Prescribed Energy.- • Periodic Solutions of Prescribed Period.- • Connecting Orbits.- • Introduction.- • Homoclinic Solutions.- • Heteroclinic Solutions.- • References.- Symplectic Topology: An Introduction.- • The Classical Uncertainty Principle, Symplectic Rigidity.- • Construction of Symplectic Invariants.- • Generating Functions.- •Historical Remarks.- • Appendix: Rigidity for Finite Dimensional Lie Groups.