Cantitate/Preț
Produs

Global Differential Geometry of Surfaces

Autor A. Svec
en Limba Engleză Hardback – 28 feb 1982
Writing this book, I had in my mind areader trying to get some knowledge of a part of the modern differential geometry. I concentrate myself on the study of sur­ faces in the Euclidean 3-space, this being the most natural object for investigation. The global differential geometry of surfaces in E3 is based on two classical results: (i) the ovaloids (i.e., closed surfaces with positive Gauss curvature) with constant Gauss or mean curvature are the spheres, (ü) two isometrie ovaloids are congruent. The results presented here show vast generalizations of these facts. Up to now, there is only one book covering this area of research: the Lecture Notes [3] written in the tensor slang. In my book, I am using the machinary of E. Cartan's calculus. It should be equivalent to the tensor calculus; nevertheless, using it I get better results (but, honestly, sometimes it is too complicated). It may be said that almost all results are new and belong to myself (the exceptions being the introductory three chapters, the few classical results and results of my post­ graduate student Mr. M. ÄFWAT who proved Theorems V.3.1, V.3.3 and VIII.2.1-6).
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63384 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 30 noi 2001 63384 lei  6-8 săpt.
Hardback (1) 63990 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 28 feb 1982 63990 lei  6-8 săpt.

Preț: 63990 lei

Preț vechi: 75283 lei
-15% Nou

Puncte Express: 960

Preț estimativ în valută:
12246 12712$ 10211£

Carte tipărită la comandă

Livrare economică 22 martie-05 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789027712950
ISBN-10: 9027712956
Pagini: 160
Ilustrații: VIII, 146 p.
Dimensiuni: 178 x 254 x 14 mm
Greutate: 0.4 kg
Ediția:1982
Editura: SPRINGER NETHERLANDS
Colecția Springer
Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

I. Multilinear algebra.- II. Differentiable manifolds.- III. Methods of global differential geometry.- IV. Local differential geometry of surfaces in E3.- V. Global differential geometry of Weingarten surfaces.- VI. Global differential geometry of isometries.- VII. Surfaces in E4 and E5.- VIII. Global differential geometry of hypersurfaces in En+1.