Global Optimization Using Interval Analysis: Revised And Expanded
Editat de Eldon Hansen, G. William Walsteren Limba Engleză Hardback – 19 dec 2003
Preț: 904.66 lei
Preț vechi: 1747.14 lei
-48% Nou
Puncte Express: 1357
Preț estimativ în valută:
173.15€ • 180.47$ • 144.14£
173.15€ • 180.47$ • 144.14£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780824740597
ISBN-10: 0824740599
Pagini: 520
Dimensiuni: 152 x 229 x 29 mm
Greutate: 0.82 kg
Ediția:Revizuită
Editura: CRC Press
Colecția CRC Press
ISBN-10: 0824740599
Pagini: 520
Dimensiuni: 152 x 229 x 29 mm
Greutate: 0.82 kg
Ediția:Revizuită
Editura: CRC Press
Colecția CRC Press
Public țintă
ProfessionalCuprins
Foreword Preface 1 INTRODUCTION 2 INTERVAL NUMBERS AND ARITHMETIC 3 FUNCTIONS OF INTERVALS 4 CLOSED INTERVAL SYSTEMS 5 LINEAR EQUATIONS 6 INEQUALITIES 7 TAYLOR SERIES AND SLOPE EXPANSIONS 8 QUADRATIC EQUATIONS AND INEQUALITIES 9 NONLINEAR EQUATIONS OF ONE VARIABLE 10 CONSISTENCIES 11 SYSTEMS OF NONLINEAR EQUATIONS 12 UNCONSTRAINED OPTIMIZATION 13 CONSTRAINED OPTIMIZATION 14 INEQUALITY CONSTRAINED OPTIMIZATION 15 EQUALITY CONSTRAINED OPTIMIZATION 16 THE FULL MONTY 17 PERTURBED PROBLEMS AND SENSITIVITY ANALYSIS 18 MISCELLANY
Notă biografică
Eldon Hansen, Consultant, Los Altos, California. G. William Walster, Sun Microsystems Laboratories , Mountain View, California, U.S.A.
Descriere
Employing a closed set-theoretic foundation for interval computations, Global Optimization Using Interval Analysis simplifies algorithm construction and increases generality of interval arithmetic. This Second Edition contains an up-to-date discussion of interval methods for solving systems of nonlinear equations and global optimization problems. It expands and improves various aspects of its forerunner and features significant new discussions, such as those on the use of consistency methods to enhance algorithm performance. Provided algorithms are guaranteed to find and bound all solutions to these problems despite bounded errors in data, in approximations, and from use of rounded arithmetic.