Cantitate/Preț
Produs

ℓ Goes to Plus Infinity: Birkhäuser Advanced Texts Basler Lehrbücher

Autor Michel Chipot
en Limba Engleză Hardback – dec 2001
Many physical problems are meaningfully formulated in a cylindrical domain. When the size of the cylinder goes to infinity, the solutions, under certain symmetry conditions, are expected to be identical in every cross-section of the domain. The proof of this, however, is sometimes difficult and almost never given in the literature. The present book partially fills this gap by providing proofs of the asymptotic behaviour of solutions to various important cases of linear and nonlinear problems in the theory of elliptic and parabolic partial differential equations.
The book is a valuable resource for graduates and researchers in applied mathematics and for engineers. Many results presented here are original and have not been published elsewhere. They will motivate and enable the reader to apply the theory to other problems in partial differential equations.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38218 lei  6-8 săpt.
  Birkhäuser Basel – 23 oct 2012 38218 lei  6-8 săpt.
Hardback (1) 39102 lei  6-8 săpt.
  Birkhäuser Basel – dec 2001 39102 lei  6-8 săpt.

Din seria Birkhäuser Advanced Texts Basler Lehrbücher

Preț: 39102 lei

Nou

Puncte Express: 587

Preț estimativ în valută:
7483 7720$ 6333£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764366469
ISBN-10: 376436646X
Pagini: 196
Ilustrații: VIII, 181 p.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.49 kg
Ediția:2002
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Birkhäuser Advanced Texts Basler Lehrbücher

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1. Introduction to Linear Elliptic Problems.- 1.1. The Lax—Milgram theorem.- 1.2. Elementary notions on Sobolev spaces.- 1.3. Applications to linear elliptic problems.- 2. Some Model Techniques.- 2.1. The case of lateral Dirichlet boundary conditions on a rectangle.- 2.2. The case of lateral Neumann boundary conditions on a rectangle.- 2.3. The case of lateral Dirichlet boundary conditions revisited.- 2.4. A different point of view.- 3. A General Asymptotic Theory for Linear Elliptic Problems.- 3.1. A general convergence result in H1 (S24,).- 3.2. A sharper rate of convergence.- 3.3. Convergence in higher Sobolev spaces.- 4. Nonlinear Elliptic Problems.- 4.1. Variational inequalities.- 4.2. Quasilinear elliptic problems.- 4.3. Strongly nonlinear problems.- 5. Asymptotic Behaviour of some Nonlinear Elliptic Problems.- 5.1. The case of variational inequalities.- 5.2. The case of quasilinear problems.- 6. Elliptic Systems.- 6.1. Some inequalities.- 6.2. Existence results for linear elliptic systems.- 6.3. Nonlinear elliptic systems.- 7. Asymptotic Behaviour of Elliptic Systems.- 7.1. The case of linear elliptic systems satisfying the Legendre condition.- 7.2. The system of elasticity.- 8. Parabolic Equations.- 8.1. Functional spaces for parabolic problems.- 8.2. Linear parabolic problems.- 8.3. Nonlinear parabolic problems.- 9. Asymptotic Behaviour of Parabolic Problems.- 9.1. The linear case.- 9.2. A nonlinear case.- Concluding Remark.