Grammatical Inference: 4th International Colloquium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998, Proceedings: Lecture Notes in Computer Science, cartea 1433
Editat de Vasant Honavar, Giora Slutzkien Limba Engleză Paperback – iul 1998
The 23 revised full papers were carefully reviewed and selected for inclusion in the book from a total of 35 submissions. The book addresses a wide range of grammatical inference theory such as automata induction, grammar induction, automatic language acquisition, etc. as well as a variety of applications in areas like syntactic pattern recognition, adaptive intelligent agents, diagnosis, computational biology, data mining, and knowledge discovery.
Din seria Lecture Notes in Computer Science
- 20% Preț: 1061.55 lei
- 20% Preț: 307.71 lei
- 20% Preț: 438.69 lei
- 20% Preț: 645.28 lei
- Preț: 410.88 lei
- 15% Preț: 580.46 lei
- 17% Preț: 427.22 lei
- 20% Preț: 596.46 lei
- Preț: 381.21 lei
- 20% Preț: 353.50 lei
- 20% Preț: 1414.79 lei
- 20% Preț: 309.90 lei
- 20% Preț: 583.40 lei
- 20% Preț: 1075.26 lei
- 20% Preț: 310.26 lei
- 20% Preț: 655.02 lei
- 20% Preț: 580.93 lei
- 20% Preț: 340.32 lei
- 15% Preț: 438.59 lei
- 20% Preț: 591.51 lei
- 20% Preț: 649.49 lei
- 20% Preț: 337.00 lei
- Preț: 449.57 lei
- 20% Preț: 607.39 lei
- 20% Preț: 1024.44 lei
- 20% Preț: 579.30 lei
- 20% Preț: 763.23 lei
- 20% Preț: 453.32 lei
- 20% Preț: 575.48 lei
- 20% Preț: 585.88 lei
- 20% Preț: 825.93 lei
- 20% Preț: 763.23 lei
- 17% Preț: 360.19 lei
- 20% Preț: 1183.14 lei
- 20% Preț: 340.32 lei
- 20% Preț: 504.57 lei
- 20% Preț: 369.12 lei
- 20% Preț: 583.40 lei
- 20% Preț: 343.62 lei
- 20% Preț: 350.21 lei
- 20% Preț: 764.89 lei
- 20% Preț: 583.40 lei
- Preț: 389.48 lei
- 20% Preț: 341.95 lei
- 20% Preț: 238.01 lei
- 20% Preț: 538.29 lei
Preț: 332.06 lei
Preț vechi: 415.08 lei
-20% Nou
Puncte Express: 498
Preț estimativ în valută:
63.55€ • 66.26$ • 52.81£
63.55€ • 66.26$ • 52.81£
Carte tipărită la comandă
Livrare economică 21 martie-04 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540647768
ISBN-10: 3540647767
Pagini: 288
Ilustrații: XI, 277 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540647767
Pagini: 288
Ilustrații: XI, 277 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:1998
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Results of the Abbadingo one DFA learning competition and a new evidence-driven state merging algorithm.- Learning k-variable pattern languages efficiently stochastically finite on average from positive data.- Meaning helps learning syntax.- A polynomial time incremental algorithm for learning DFA.- The data driven approach applied to the OSTIA algorithm.- Grammar model and grammar induction in the system NL PAGE.- Approximate learning of random subsequential transducers.- Learning stochastic finite automata from experts.- Learning a deterministic finite automaton with a recurrent neural network.- Applying grammatical inference in learning a language model for oral dialogue.- Real language learning.- A stochastic search approach to grammar induction.- Transducer-learning experiments on language understanding.- Locally threshold testable languages in strict sense: Application to the inference problem.- Learning a subclass of linear languages from positive structural information.- Grammatical inference in document recognition.- Stochastic inference of regular tree languages.- How considering incompatible state mergings may reduce the DFA induction search tree.- Learning regular grammars to model musical style: Comparing different coding schemes.- Learning a subclass of context-free languages.- Using symbol clustering to improve probabilistic automaton inference.- A performance evaluation of automatic survey classifiers.- Pattern discovery in biosequences.
Caracteristici
Includes supplementary material: sn.pub/extras