Cantitate/Preț
Produs

Guide to Modern Physics: Using Mathematica for Calculations and Visualizations

Autor James W. Rohlf
en Limba Engleză Paperback – 7 noi 2023
This is a "how to guide" for making beginning calculations in modern physics. The academic level is second year college physical science and engineering students. The calculations are performed in Mathematica, and stress graphical visualization, units, and numerical answers. The techniques show the student how to learn the physics without being hung up on the math. There is a continuing movement to introduce more advanced computational methods into lower-level physics courses. Mathematica is a unique tool in that code is written as "human readable" much like one writes a traditional equation on the board.
Key Features:
  • Concise summary of the physics concepts.
  • Over 300 worked examples in Mathematica.
  • Tutorial to allow a beginner to produce fast results.
The companion code for this book can be found here: https://physics.bu.edu/~rohlf/code.html
James Rohlf is a Professor at Boston University. As a graduate student he worked on the first experiment to trigger on hadron jets with a calorimeter, Fermilab E260. His thesis (G. C. Fox, advisor, C. Barnes, R. P. Feynman, R. Gomez) used the model of Field and Feynman to compare observed jets from hadron collisions to that from electron-positron collisions and made detailed acceptance corrections to arrive at first the measurement of quark-quark scattering cross sections. His thesis is published in Nuclear Physics B171 (1980) 1. At the Cornell Electron Storage Rings, he worked on the discovery of the Upsilon (4S) resonance and using novel event shape variables developed by Stephen Wolfram and his thesis advisor, Geoffrey Fox. He performed particle identification of kaons and charmed mesons to establish the quark decay sequence, b –> c. At CERN, he worked on the discovery of the W and Z bosons and measurement of their properties. Presently, he is working on the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) which discovered the Higgs boson and is searching for new phenomena beyond the standard model.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 34057 lei  3-5 săpt. +1910 lei  6-12 zile
  CRC Press – 7 noi 2023 34057 lei  3-5 săpt. +1910 lei  6-12 zile
Hardback (1) 82371 lei  6-8 săpt.
  CRC Press – 7 noi 2023 82371 lei  6-8 săpt.

Preț: 34057 lei

Nou

Puncte Express: 511

Preț estimativ în valută:
6521 6727$ 5405£

Carte disponibilă

Livrare economică 30 ianuarie-13 februarie
Livrare express 15-21 ianuarie pentru 2909 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032496863
ISBN-10: 103249686X
Pagini: 218
Ilustrații: 4 Tables, black and white; 69 Line drawings, black and white; 69 Illustrations, black and white
Dimensiuni: 156 x 234 x 17 mm
Greutate: 0.36 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Public țintă

Postgraduate, Undergraduate Advanced, and Undergraduate Core

Cuprins

1. Basis of Modern Physics 2. Thermal Radiation 3. Key Processes 4. Special Relativity 5. Bohr Model 6. Particle in a Box 7. Quantum Harmonic Oscillator 8. Hydrogen Atom 9. Statistical Physics 10. Astrophysics Appendix A: Mathematica Starter Appendix B: Physical Constants

Notă biografică

James Rohlf is a Professor at Boston University. As a graduate student he worked on the first experiment to trigger on hadron jets with a calorimeter, Fermilab E260. His thesis (G. C. Fox, advisor, C. Barnes, R. P. Feynman, R. Gomez) used the model of Field and Feynman to compare observed jets from hadron collisions to that from electron-positron collisions and made detailed acceptance corrections to arrive at first the measurement of quark-quark scattering cross sections. His thesis is published in Nuclear Physics B171 (1980) 1. At the Cornell Electron Storage Rings, he worked on the discovery of the Upsilon (4S) resonance and using novel event shape variables developed by Steven Wolfram and his thesis advisor, Geoffrey Fox. He performed particle identification of kaons and charmed mesons to establish the quark decay sequence, b –> c. At CERN, he worked on the discovery of the W and Z bosons and measurement of their properties. Presently, he is working on the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) which discovered the Higgs boson and is searching for new phenomena beyond the standard model.

Descriere

This is a "how to guide" for making beginning calculations in modern physics. The academic level is second year college physical science and engineering students.